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Abstract

The multiple point spaces of a map germ f play an important role in the study
of its geometry, as well as the topology of the image or discriminant of a stable
perturbation of f . I will introduce some algorithms and implementations on Maple
and Singular to obtain the definition ideals of such multiple point spaces in the
source and in the target. The aim of the minicourse is to introduce the students and
researchers to the use of computational methods for studying properties of explicit
examples of singularities.
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1 Introduction

The study of the geometry and topology of a stable perturbation of map germs is one
of the main goals in singularity theory and in this sense, the multiple point spaces play
a fundamental role. The information encoded in these spaces allows us to describe the
geometry and the topology of the image or of the discriminant by providing a complete
overview on the map. An important tool to study the multiple point spaces in the target
is the determination of the Fitting ideals associated to the image or discriminant, how-
ever to find these ideals is not easy and the difficulty appears even in low dimensions of
target and source. Therefore the use and development of computational methods and its
implementations are essential for the continuity in the development of this theory.

The main purpose of this minicourse is to show algebraic tools and techniques of
complex singularities theory through the use of computational methods. First we recover
from the Singular manual the general concepts that are usual in singularity theory and
commutative algebra, for instance, the Milnor and Tjurina numbers of function germs with
isolated singularity, primary decomposition of ideals, Groebner and Standard bases, plot
curves and surfaces, etc. Moreover, we also include in this minicourse several examples
that are useful to illustrating how these commands and algorithms work.

Then the multiple point spaces in the source are defined for corank 1 map germs, we
show an explicit description of all stable types in the source and target for corank 1 map
germs from (Cn, 0) to (Cn, 0). This description is done in terms of subschemes of multiple
points of a germ f . We present an implementation in Maple and Singular and several
examples are given to compute the stable types in the source. The results relating the
multiple point spaces with the main properties of finitely determined map germs appear
in the sequel, then we use some algorithms and its implementation to calculating these
sets in the source.

Last, but not least, we describe the multiple point spaces in the target for map germs
which are not necessarily of corank 1. The kth multiple points space Mk(f) is the closure
in the image of the set of points having k or more preimages, counting multiplicities, and
in this case, Mk(f) is defined by means of the Fitting ideals of a presentation matrix
associated to the germ f , concept developed by Mond and Pellikaan. We present an
algorithm and a Singular library, to obtain such presentation matrix. The Fitting ideals
are very relevant because its tell us a great deal about the geometric behavior of such
maps.

The author would thanks the organizing committee of this School on Singularity Theory
for this invitation to give this minicourse, and also thank Marcelo Saia for his comments.



2 Introduction to Singular

In this section we shall give a short introduction to the computer algebra system
Singular, [5].

Most of the text in this chapter was extracted verbatim from the, [11], [10], and online
manual of Singular. For more details we refer to the Singular Manual, which is offered
as an online help for Singular.

The Singular, is a Computer Algebra system (CA-system), designed for polynomial
computation. Which was developed in order to support mathematical research in commu-
tative algebra, algebraic geometry and singularity theory. The main computational objects
of Singular, are ideals and modules over a large variety of baserings. The baserings are
polynomial rings or localizations thereof over a field (e.g., finite fields, the rationals, floats,
algebraic extensions, transcendental extensions) or over a limited set of rings, or over
quotient rings with respect to an ideal.

Singular features one of the fastest and most general implementations of various
algorithms for computing Groebner bases. Furthermore, it provides polynomial factoriza-
tion, resultant, gcd computations, syzygy, free-resolution computations, and many more
related functionalities.

Singular is available, free of charge, as a binary programme for most common
hardware and software platforms. Release versions of Singular can be downloaded
through site https://www.singular.uni-kl.de/download.html. It is also possible to use
the official web-interface of Singular based on the InteractiveShell package by Franziska
Hinkelmann, Lars Kastner and Mike Stillman, through browser https://www.singular.uni-
kl.de:8003/.

The development of Singular started in early 80’s in order to support the research in
commutative algebra, algebraic geometry and singularity theory. The areas of applica-
tions of singular grew significantly. Now it includes symbolic-numerical solving, integer
programming, tropical geometry, noncommutative computer algebra, etc.

2.1 Getting Started

Before starting with the first commands in Singular, we define polynomial ring and
ideals.

The polynomial ringK[x1, . . . , xn] in n variables over ringK is the set of all polynomials
together with the usual operations, of sum and multiplications:∑

α

aαx
α +

∑
α

bαx
α :=

∑
α

(aα + bα)xα,

(∑
α

aαx
α

)(∑
β

bβx
β

)
:=
∑
γ

(∑
α+β

aαbβ

)
xγ.

Where, x = (x1, . . . , xn), α = (α1, . . . , αn) ∈ Nn, β = (β1, . . . , βn) ∈ Nn, aα, bβ ∈ K, and
xα = xα1

1 · . . . ·xαnn . Addition and subtraction of two polynomials are performed by adding
or subtracting corresponding coefficients.
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K[x1, . . . , xn] is a commutative ring with identity 1 = x0
1 · . . . · x0

n, which we identify
with the element 1 ∈ K. Elements of K ⊂ K[x] are called constant polynomials. K is
called of ground ring of K[x] or ground field if K is a field.

Given a finite collection of polynomials f1, . . . , fs ∈ K[x1, . . . , xn], we can create other
polynomials dependent on these by multiplying by arbitrary polynomials in K[x1, . . . , xn]
and taking the sum.

Definition 2.1. A subset I ⊂ K[x1, . . . , xn] is an ideal if it satisfies:

i. 0 ∈ I.

ii. If f, g ∈ I, then f + g ∈ I.

iii. If f ∈ I and h ∈ K[x1, . . . , xn], then hf ∈ I.

Definition 2.2. Let f1, . . . , fs ∈ K[x1, . . . , xn]. Then we set 〈f1, . . . , fs〉 to denote the
collection

〈f1, . . . , fs〉 = {p1f1 + · · ·+ psfs : pi ∈ K[x1, . . . , xn], i = 1, . . . , s}.

An important result that we will not prove here is:

Theorem 2.3 (Hilbert Basis Theorem). Every ideal I ∈ K[x1, . . . , xn] has a finite gen-
erating set. In other words, given an ideal I, there exists a finite number of polynomials
f1, . . . , fs ∈ K[x1, . . . , xn] such that I = 〈f1, . . . , fs〉.

1. Once SINGULAR is started, it awaits an input after the prompt “>”.

2. Every statement has to be terminated by “;” . The semicolon tells the computer
that the inputted command is to be interpreted.

3. All objects have a type, e.g., integer variables are defined by the word int.

> int k = 12;

4. An assignment is made using the symbol “=”.

5. Test for equality is done using “==”.

6. Test for inequality is done using “! =” or “<>”, where 0 represents the boolean
value FALSE, and any other value represents TRUE.

> k == 12;

1;

> k != 12;

0;

7. The value of an object is displayed by simply typing its name.
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> k;

12;

8. The command

> help; //open the help file of singular.

9. Text starting with // denotes a comment and is ignored in calculations.

Variables of type string can also be defined and are delimited by ´´ (double quotes).
They may be used to comment the output of a computation. If a string contains valid
Singular commands, it can be executed using the function execute. The result is the
same as if the commands would have been written on the command line. This feature is
especially useful to define new rings inside procedures.

In Singular one can define polynomial rings over the following fields:

1. the field of rational number Q;

2. finite fields Fp, p a prime number ≤ 2147483629;

3. finite fields GF (pn) with pn elements, p a prime, pn ≤ 215;

4. transcendental extensions of Q or Fp;

5. simple algebraic extensions of Q or Fp;

6. simple precision real floating point numbers;

7. arbitrary prescribed real floating point numbers;

8. arbitrary prescribed complex floating point numbers.

Remark 2.4. Indeed, the computation over the above fields is exact, only limited by the
internal memory of the computer. Strictly speaking, floating point numbers, as in 6. −
8., do not represent the field of real (or complex) numbers. Because of rounding errors,
the product of two non zero elements or the difference between two unequal elements
may be zero. Of course, in many cases one can trust the result, but we should like to
emphasize that this remains the responsibility of the user, even if one computes with very
high precision.

To perform a calculation in Singular it is first absolutely necessary to define the ring
over which one is working.

1. Computation in the field of rational numbers:

> ring A=0, x, dp;

> number n = 2/3;

> n^3;

8/27;
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> ring A=0, x, dp; define a ring of polynomials in variable x, characteristic zero,
with coefficients in Q, and monomial global order dp. (dp is a degree reverse lexico-
graphical ordering).

2. Computation in finite fields:

> ring A1=32003, (x), dp;

> number n=1010253;

> n^8;

3451;

> ring A1=32003, x, dp; define the ring A1= Zp[x], polynomial ring of charac-
teristc p = 32003 with coefficients in the field Zp.

3. Computation with real floating point numbers, 100 digits precision:

> ring r=(real,100),(x),dp;

> number n=2/5;

> n^9000;

0.3466745429523766868669875201719137528580444595048549101118260943266639

857068382934568148647598693689e-3581

>

We have a number with 3581 digits after point. However, only 100 digits are com-
puted.

4. Computation with complex floating point numbers, 20 digits precision:

> ring R1=(complex, 20,i), (x), dp;

> number n = 123456.0+0.021i;

> n^7;

0.43710463467674779545e+36+i*0.5204638194705186105e+31;

The result is a complex number whith real part and imaginary part with respectively
36 and 31 digits. However, only 20 digits are computed.

5. Computation in polynomial rings (over Q)

> ring R=0,(x,y,z), lp;

> poly f=x4+zy2;

> f*f-2*f;

x8+2x4y2z-2x4+y4z2-2y2z

>
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R = Q[x, y, z] is a polynomial ring of characteristic 0 over Q, in variables (x, y, z).
(lp is a monomial global lexicographic ordering.)

6. More examples of rings which one can define in Singular.

i. > ring r1=integer,(a,b),lp;

The ring of integers, variables a and b, ordering lp.

ii. > ring r2=(integer, 20),(a,b),lp;

The ring of integers modulo 20, variables a and b.

iii. > ring r3=(integer,2,12),(a,b),lp;

The ring of integers modulo 212, variables a and b.

iv. > ring r4 = 0,(x(1..48)),dp;

The ring over Q, characteristic 0, variables x(1), . . . , x(48).

v. > ring r5 = 0,(x,y,z),dp;

> ideal I=x^2,y,z^2;

> qring r6 = std(I); \\quotient ring modulo I

The ring r6 is quotient ring modulo I, r6 = Q[x,y,z]
〈x2,y,z2〉 .

vi. > ring r=(0,a,b),(x,y,z),lp;

The ring of polynomials in the variables x, y, z, where the coefficients are ra-
tional terms in the variables a and b, r = Q(a, b)[x, y, z]. Important is that the
variables in the first brackets can appear in the denominator of fractions, the
ones in the second brackets may not.

vii. For a mixed ordering, we obtain others rings.

1. We define the ring (Q[x, y]<x,y>)[z], polynomial ring in variable z, with
coefficients in the localization of polynomial ring Q[x, y], by

> ring r=0,(z,x,y),(dp(1),ds(2));

> r;

// characteristic : 0

// number of vars : 3

// block 1 : ordering dp

// : names z

// block 2 : ordering ds

// : names x y

// block 3 : ordering C

viii. For quasihomogenous input ideals, Groebner bases computations are generally
faster with the orderings Wp(w1, . . . , wn) or Ws(w1, . . . , wn).

> ring A = 0,(x,y,z), Wp(5,3,2);
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ix. Let R be a ring. Elements of submodules are given by vectors in Rn as gener-
ators. The canonical basis elements ei of Rn (ei = (0, · · · , 1, . . . , 0), 1 at place
i), are denoted by gen(i) in Singular.

> ring R=0,(x,y,z),dp;

> matrix M[2][2] = xy,yz,xz,z2;

> print(M);

xy,yz,

xz,z2

> module ker = syz(M); ker;

ker[1]=x*gen(2)-z*gen(1)

ker is the submodule of Q[x, y, z]2.

x. Module orderings

> ring R2=0,(x,y,z),(c,dp);

> module ker = imap(R,ker);

> ker;

ker[1]=[-z,x]

The ordering (c,..) has the effect that output is represented as component-wise.

In Singular, we can define several rings in the same ambient. Defining a ring makes
this ring the current active basering. If the current ring is r, and one want to calculate in
the ring r1, which has been defined before, this can be done using the function setring.

> setring r1;

Now, the current ring is r1, but the data of the ring r has not been deleted.
In Singular, it is also possible to program, create procedures, libraries, and the

syntax is based on the well-known C language. The Singular distribution contains
several libraries, each of which contains a collection of procedures, and can be loaded
when necessary.

> LIB "all.lib"; //loads and lists all libraries of Singular.

Objects defined in a ring can be carried to other rings without having to redefine them
again.

imap is the map between rings and quotient rings (qring) with compatible ground
fields which is the identity on variables and parameters of the same name and 0 otherwise.
imap uses the names of variables and parameters and it can map parameters to variables.

fetch is the identity map between rings and quotient rings (qring), this map uses the
position of the ring variables, not their names, i.e. the i-th variable of the source ring is
mapped to the i-th variable of the basering. The coefficient fields must be compatible.
fetch offers a convenient way to change variable names or orderings.
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> ring r1=0,(x,y,z),dp;

> ring r2=0,(y,x,z),dp;

> ring r3=0,(a,b,c),dp;

> setring r1;

> poly f = x2+y3+z2+xz+y2z;

> f;

y3+y2z+x2+xz+z2

> setring r2;

> poly f=imap(r1,f);f;

y3+y2z+x2+xz+z2 \\uses the names of variables

> poly g=fetch(r1,f);g;

x3+x2z+y2+yz+z2 \\uses the position of variables

> setring r3;

> poly f=imap(r1,f);f;

0

> poly g=fetch(r1,f);g;

b3+b2c+a2+ac+c2

“Maps” are ring maps from a preimage ring (source) into the basering (target), defined
by specifying images for source variables in the target ring. The target of a map is always
the actual basering. Maps between rings with different coefficient fields are possible.

> ring r1=0,(x,y,z),dp;

> ring r3=0,(a,b,c),dp;

> setring r1;

> ideal i=x2+y2+z;

> setring r3;

> map M=r1, a2,b,c+1;

> ideal j=M(i);j;

j[1]=a4+b2+c+1

In this example, we have that M is the map:

M : r1 −→ r3

x 7−→ a2

y 7−→ b
z 7−→ c+ 1

Then, M(i) = (a2)2 + b2 + c+ 1 = a4 + b2 + c+ 1.

Grobner and Standard bases, are used for example, in question to decide whether some
function vanishes on a variety, or in algebraic terms if a polynomial is contained in a given
ideal. For this we calculate a standard bases using the command groebner.

> LIB "standard.lib"; \\libraries for standard or Groebner bases

> ring r=0,(x,y),lp;
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> ideal I=xy-1,y2-1;

> ideal G=groebner(I); \\return Groebner bases of ideal I

> G;

G[1]=y2-1

G[2]=x-y

We can plot curves and surfaces in Singular with the plot command in the library
surf.lib.

LIB "surf.lib";

ring r = 0,(x,y,z),dp;

poly p = z^2-x^2*y; // Whitney umbrella

plot(p);

Figure 1: Whitney umbrella.

We can create library in Singular. Next example is a library to calculate the Milnor
and Tjurina number of a hypersurface, with isolated singularity.

version="$Id: milnortjurinanumber.lib 2018-07-15 $";

category="Singularity Theory, Commutative Algebra";

info="

LIBRARY: milnortjurinanumber.lib Compute Milnor and Tjurina number

AUTHORS: name of author01, email01@email01.com

name of author02, email02@email02.com

PROCEDURES:

MilnorTjurina(); compute Milnor and Tjurina numbers

";

//----------------------------------------------------

proc MilnorTjurina (poly p)

{

ideal j=jacob(p);

list L=vdim(std(j)), vdim(std(j+p));

print("//List with Milnor and Tjurina number resp.");

return(L);

}

> poly f = z4+y3+x2+xy;
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> MilnorTjurina(f);

//List with Milnor and Tjurina number resp.

[1]:

6

[2]:

3

We will now see some very useful commands in Singular.

The command reduce, reduces a polynomial, vector, ideal or module to its normal
form with respect to an ideal or module represented by a standard bases. Returns 0 if,
and only if, the polynomial (resp. vector, ideal, module) is an element (resp. subideal,
submodule) of the ideal (resp. module).

> ring r=0,(x,y),ds;

> ideal I=x2+y2,xy;

> ideal J=std(I);

> reduce(yx2+y3+x2y,J);

0 //yx2+y3+x2y is an element of I

> reduce(x+y,J);

x+y //x+y is not a element of I

The command kbase, computes a vector space basis consisting of monomials of the
quotient ring by the ideal, respectively of a free module by the module, in case it is finite
dimensional and if the input is a standard bases with respect to the ring ordering.

> ring r=0,(x,y),ds;

> ideal i=x2,y2;

> vdim(std(i));

4

> kbase(std(i));

_[1]=xy

_[2]=y

_[3]=x

_[4]=1

The command division, computes a division with remainder for two ideals or two
modules. Example: Let f be the polynomial defined by x2y + xy2 + y2 and let the ideal
I = 〈y2 − 1, x − y〉. Find a1, a2, r such that f = a1(y2 − 1) + a2(x − y) + r, r is the
remainder.

> ring r=0,(x,y),lp;

> ideal I=y2-1,x-y;

> poly f=x2y+xy2+y2;

> list L=division(f,I);
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> L[1]; //return ai´s

_[1,1]=2x+1

_[2,1]=xy+2

> L[2]; //return remainder r

_[1]=2y+1

Therefore, x2y + xy2 + y2 = (2x+ 1)(y2 − 1) + (xy + 2)(x− y) + (2y + 1).
See below that, reduce(f,std(I)), return r = 2y + 1.

> ring r=0,(x,y),lp;

> ideal I=y2-1,x-y;

> poly f=x2y+xy2+y2;

> reduce(f,std(I));

2y+1 //equal the remainder above

The command factorize, computes the irreducible factors as an ideal of the polyno-
mial.

> ring r=0,(x,y),dp;

> poly i=(x-1)^2*(y^2+1);

> factorize(i);

[1]:

_[1]=1

_[2]=x-1

_[3]=y2+1

[2]:

1,2,1 //factor (x-1) has multiplicity 2

//factor y^2+1 is irreducible in Q[x]

> ring q=(0,i),y,dp;

> minpoly =i2+1;

> poly p=y2+1;

> factorize(p);

[1]:

_[1]=1

_[2]=y+(i)

_[3]=y+(-i)

[2]:

1,1,1

The command resultant computes the resultant of two polynomials with respect to
one variable.

> ring r=0,(x,y,z),dp;

> poly f=x2+y3+xz2+z2+1;

> poly g=xy+x2z+y2;

> resultant(f,g,z);

x4y3+x6+x3y2+2x2y3+xy4+x4+x2y2+2xy3+y4

14



The command subst, substitutes one or more ring variable(s) or parameter variable(s)
by (a) polynomial(s).

> ring r=0,(x,y,z),dp;

> poly f=x2+y3+xz2+z2+1;

> subst(f,x,y,z,1);

y3+y2+y+2

2.2 Using Singular

All calculations in a CA-system are performed over the field of rationals numbers or
over a field extensions thereof, but not over the field of real or complex numbers. The cal-
culations does not change, but we need to be aware of this when analysing computacional
results.

In the following examples, we will use elimination and primary decomposition.

Definition 2.5. Let I = 〈f1, . . . , fs〉 ⊂ K[x1, . . . , xn] be an ideal. The `th elimination
ideal I` is the ideal of K[x`+1, . . . , xn] defined by

I` = I ∩K[x`+1, . . . , xn].

I` is an ideal of K[x`+1, . . . , xn] and different orderings of variables results in different
elimination ideals. Groebner bases allow us to eliminate the variables x1, . . . , x`.

Theorem 2.6 ([3], Theorem 2, (The Elimination Theorem)). Let I ⊂ K[x1, . . . , xn] be an
ideal and let G be a Groebner bases of I with respect to lex order where x1 > . . . > xn.
Then, for every 0 ≤ ` ≤ n, the set

G` = G ∩K[x`+1, . . . , xn]

is a Groebner bases of the `th elimination ideal I`.

Intersection with subrings or elimination of variables is one of the most important
applications of Groebner bases. In the case of polynomial ring, we need a global elimination
ordering for the variables.

Example 2.7. Let f : K2 → K3 be a map defined parametrically by f(x, z) = (x,−4z3−
2xz,−3z4 − xz2). Compute an implicit equation for this surface using the Singular.

> ring r=0,(x,z,X,Y,Z),dp;

> ideal I=X-x, Y-(-4z^3-2xz), Z-(-3z^4-xz^2);

> ideal eI=eliminate(I,xz);

> eI;

eI[1]=4X3Y2+16X4Z+27Y4+144XY2Z+128X2Z2+256Z3

> short=0;

> eI;

eI[1]=4*X^3*Y^2+16*X^4*Z+27*Y^4+144*X*Y^2*Z+128*X^2*Z^2+256*Z^3
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Example 2.8. Compute the singular locus of eI obtained in the Example 2.7. We can
apply the Jacobian criterion, since the ideal eI is equidimensional.

> ring R=0,(X,Y,Z),dp;

> ideal J=imap(r,eI);

> J;

J[1]=4X3Y2+16X4Z+27Y4+144XY2Z+128X2Z2+256Z3

> dim(std(J));

2

> ideal J2=slocus(J);

> J2;

J2[1]=4X3Y2+16X4Z+27Y4+144XY2Z+128X2Z2+256Z3

J2[2]=16X4+144XY2+256X2Z+768Z2

J2[3]=8X3Y+108Y3+288XYZ

J2[4]=12X2Y2+64X3Z+144Y2Z+256XZ2

When solving a system of equations, it is important to understand the geometry of the
zero-set. To better visualise the set of zeros of ideal J2, we can try to decompose ideal J2.
An important step towards this goal is finding the primary decomposition of the defining
ideal. For decomposing an algebraic variety into its irreducible components, the algebraic
foundation for this is given by primary decomposition of ideals. Primary decomposition
provides a generalization of the factorization of an integer as a product of prime-powers.
In some sense, a prime ideal in a ring A is a generalization of a prime number. The
corresponding generalization of a power of a prime number is a primary ideal.

Let A be a ring. An ideal I ( A is primary if ab ∈ I imply either a ∈ I or bn ∈ I for
some n > 0. Cleary every prime ideal is primary.

Theorem 2.9. Let A be a Noetherian ring and I ( A be an ideal, then there exists an
irredundant decomposition I = ∩ri=1Qi of I, where Qi, i = 1, . . . , r are primary ideals.

There are two algorithms implemented in Singular which provide primary decompo-
sition of an ideal, implemented in the library primdec.lib, primdecGTZ, algorithm based on
Gianni-Trager-Zacharias, written by Gerhard Pfister and primdecSY, based on Shimoyama-
Yokoyama, written by Wolfram Decker and Hans Schoenemann. The result of these two
commands is returned as a list of pairs of ideals, where the first ideal corresponding primary
ideal and the second ideal is the prime ideal.

> list L=primdecSY(J2);

> L;

[1]:

[1]: //the 1st primary component

_[1]=9XY2+40X2Z-96Z2

_[2]=2X3+27Y2+72XZ

_[3]=27Y4-512X2Z2+2048Z3

[2]: //the 1st prime component

_[1]=9Y2+32XZ
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_[2]=X2-12Z

[2]:

[1]: //the 2nd primary component

_[1]=Y

_[2]=X2+4Z

[2]: //the 2nd prime component

_[1]=Y

_[2]=X2+4Z

//J2 is not radical

> ideal J3=slocus(radical(J2));

//J3 has 22 generators

> size(J3);

22

> ideal J4 = radical(J3);

J4[1]=Z

J4[2]=Y

J4[3]=X

slocus(J) return ideal of singular locus of J . In this case the radical of singular locus has
two 1-dimensional components, one L[1][2] := 〈9Y 2+32XZ,X2−12Z〉 defines the cuspidal
edge (blue color) and the other L[2][2] := 〈Y,X2 + 4Z〉 defines the curve of double points
(red color). The ideal J4 is the radical of ideal slocus(radical(J2)) is the maximal
ideal of ring R, and V (J4) = {(0, 0, 0)} (green color) is the singular locus of radical(J2).
By Hilbert Nullstellensatz, V (I) = V (

√
I). Thus, the set of singular points in the Figure

2 was obtained by the vanishing locus of these radical ideals.

Example 2.10. Branches of space curve singularities
Consider the ideal i = 〈x4 − yz2, xy − z3, y2 − x3z〉. As dim(std(i))=1 we have

a space curve, (dim(std(i)) return the Krull dimension of i) and as vdim(T_1(i))=13,
(vdim(T_1(i)) return the tjurina number of i), this ideal defines a space curve in C[x, y, z]
with isolated singularities. The objetive in this example, is to compute the number of
branches and will be computed as an example of the pitfalls appearing in the use of
primary decomposition. We can have two situations in which the primary decomposition
algorithm might not lead to a complete decomposition. One of the computed components
could be globally irreducible, but analytically reducible or could be irreducible over the
rational numbers, but reducible over the field of complex numbers.

> ring r=0,(x,y,z),ds;

> ideal i=x^4-y*z^2,x*y-z^3,y^2-x^3*z;

> i;

i[1]=-yz2+x4

i[2]=xy-z3

i[3]=y2-x3z

> qhweight(i);
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Figure 2: Swallowtail surface.

1,2,1

> dim(std(i));

1

As this space curve singularity is quasihomogeneous, we can pass to the polynomial
ring. The command qhweight(I) computes the weight of the variables for a quasihomo-
geneous ideal I.

> ring r2=0,(x,y,z),dp;

ideal i=imap(r,i);

i[1]=x4-yz2

i[2]=-z3+xy

i[3]=-x3z+y2

> primdecGTZ(i);

[1]:

[1]:

_[1]=y-z2

_[2]=x-z

[2]:

_[1]=y-z2

_[2]=x-z

[2]:

[1]:

_[1]=y4+y3z2+y2z4+yz6+z8

_[2]=y3+y2z2+yz4+xz5+z6
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_[3]=xy-z3

_[4]=y2+xyz+yz2+x2z2+xz3

_[5]=xy+yz+x3+x2z+xz2

[2]:

_[1]=y4+y3z2+y2z4+yz6+z8

_[2]=y3+y2z2+yz4+xz5+z6

_[3]=xy-z3

_[4]=y2+xyz+yz2+x2z2+xz3

_[5]=xy+yz+x3+x2z+xz2

> primdecSY(i);

[1]:

[1]:

_[1]=x-z

_[2]=-y+z2

[2]:

_[1]=x-z

_[2]=-y+z2

[2]:

[1]:

_[1]=-xy+z3

_[2]=xy+yz+x3+x2z+xz2

_[3]=y2+x2y+xyz+yz2+x2z2

[2]:

_[1]=-xy+z3

_[2]=xy+yz+x3+x2z+xz2

_[3]=y2+x2y+xyz+yz2+x2z2

Note that using the two algorithms for primary decompositions, the curve seems to
have two branches. We can use other invariants of space curve singularities to check if this
curve have two branches. Two known invariants are Milnor and Tjurina number. As this
singularity curve is quasihomogeneous, we have the following formulae µ = τ − t+ 1 and
µ = 2δ − r + 1 where, τ is the Tjurina number, t is the Cohen-Macaulay type, r is the
number of branches and δ is the delta invariant. As τ = 13, t = 2, by the first formulae
µ = 12. On the other hand, if r = 2, by the second formulae µ is odd, but it is impossible.
So obviously, we did not decompose this curve completely.

To compute the Cohen-Macaulay type, use minimal resolution mres or CMtype com-
mand.

> vdim(T_1(i)); \\ tjurina number

// dim T_1 = 13

13

> CMtype(i); \\Cohen-Macaulay type

2

> resolution i_res = mres(i,0); \\ minimal free resolution of an ideal

> i_res;

1 3 2

19



r2 <-- r2 <-- r2

0 1 2

By the last number in the resolution, we see that the Cohen-Macaulay type of the given
singularity is 2.

Let us now to compute the absolute prime components of i, using the command
absPrimdecGTZ(i), a procedure from library primdec.lib. We must assume ground field
has characteristic 0. absPrimdecGTZ(i) return the list absolute primes such that each en-
try describes a class of conjugated absolute primes. The entry absolute_primes[i][1]

return the absolute prime component, and absolute_primes[i][2] return the number
of conjugates. We observe that the first entry of absolute_primes[i][1] is the minimal
polynomial of a minimal finite field extension over which the absolute prime component
is defined.

> def A=absPrimdecGTZ(i);

// ’absPrimdecGTZ’ created a ring, in which two lists absolute_primes (the

// absolute prime components) and primary_decomp (the primary and prime

// components over the current basering) are stored.

// To access the list of absolute prime components, type (if the name S was

// assigned to the return value):

setring S; absolute_primes;

> setring A;

> absolute_primes[1];

[1]:

_[1]=a

_[2]=x-z

_[3]=z2-y

[2]:

1

> absolute_primes[2];

[1]:

_[1]=a4+a3+a2+a+1

_[2]=z2+ya3+ya2+ya+y

_[3]=xy+yza3+yza2+yza+yz

_[4]=x3+x2z+xz2+xy+yz

[2]:

4

Note that absolute_primes[1] has one component. The first entry of the list
absolute_primes[2][1] is the polynomial a4 + a3 + a2 + a + 1 of degree 4 in a which
factors completely in 4 polynomials of type a+ b and absolute_primes[2][2]=4 say that
the second component of i has 4 branches. Finally, the ideal i has 5 branches.

i = i1 ∩ i2 ∩ i3 ∩ i4 ∩ i5, where I =
√
−1 and
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i1 = 〈x− z, z2 − y〉,

i2 = 〈−1
4
y
√

5 + y
4

+ I
4
y
√

2
√

5 +
√

5 + z2,−1
4
yz
√

5 + 1
4
yz + I

4
yz
√

2
√

5 +
√

5 + xy,
x3 + x2z + xz2 + xy + yz〉,

i3 = 〈1
4
y
√

5 + y
4

+ I
4
y
√

2
√

5−
√

5 + z2, 1
4
yz
√

5 + 1
4
yz + I

4
yz
√

2
√

5−
√

5 + xy,
x3 + x2z + xz2 + xy + yz〉,

i4 = 〈1
4
y
√

5 + y
4
− I

4
y
√

2
√

5−
√

5 + z2, 1
4
yz
√

5 + 1
4
yz − I

4
yz
√

2
√

5−
√

5 + xy,
x3 + x2z + xz2 + xy + yz〉,

i5 = 〈−1
4
y
√

5 + y
4
− I

4
y
√

2
√

5 +
√

5 + z2,−1
4
yz
√

5 + 1
4
yz − I

4
yz
√

2
√

5 +
√

5 + xy,
x3 + x2z + xz2 + xy + yz〉.
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3 Multiple point spaces in the source

The multiple point spaces of a map germ from (Cn, 0) to (Cp, 0) play an important
role in the study of its geometry, as well as the topology of the discriminant of a stable
perturbation. First, we present an explicit description of all stable types in the source and
in the target for corank 1 map germs from (Cn, 0) to (Cn, 0). This description is done in
terms of subschemes of multiple points of a germ f . The description of the 0-stable types
is shown by [Marar, Montaldi, Ruas, [26]]. In the following, the generalization for this
description for all r-stable types, with 0 ≤ r ≤ n− 1, is shown by [Jorge-Pérez, Levcovitz,
Saia,[15]]. In this chapter, our aim is to compute the stable types of f using a CA-system,
such as Singular. We present an implementation in Maple, [45], and Singular and
several examples will be calculated.

3.1 Notation and preliminaries

We follow the notation used by Gaffney in [7] and denote by O(n, p) the set of origin
preserving germs of holomorphic mappings from Cn to Cp.

For a germ f ∈ O(n, p), J(f) denotes the ideal generated by the set of p× p minors of
the derivative of f . The critical set of f , denoted by Σ(f), is the set of points x ∈ Cn such
that J(f)(x) = 0. The discriminant of f , denoted by ∆(f), is the image of the critical set
by f .

Our interest is in A-finitely determined map germs, where A denotes the usual Mather
group of germs of holomorphic difeomorphisms in the source and in the target. We denote
by F a versal unfolding of such a f .

Definition 3.1. We say that a stable type Q appears in F if for any representative
F = (id, fu(x)) of F , there exists a point (s, y) ∈ Cs × Cp such that the germ fu :
(Cn, S)→ (Cp, y) is a stable germ of type Q where S = f−1(y) ∩ Σ(fu). The points (s, y)
and (s, x) with x ∈ S are called points of stable type Q in the target and in the source,
respectively.

Definition 3.2. We say that Q is a zero-dimensional stable type for the pair (n, p) if Q(f)
has dimension 0 where f is a representative of the stable type Q.

A finitely determined map germ f has discrete stable type if there exist a versal un-
folding F of f in which appears only a finite number of stable types. If (n, p) is in the
nice range of dimensions or in this boundary, then any finitely determined germ f has a
discrete stable type.

We say that two elements f and g of O(n, p) are A-equivalent if f = l ◦ g ◦ r−1 where
(l, r) ∈ Diff(Cn, 0)×Diff(Cp, 0).

A germ is k-A-determined if any g ∈ O(n, p) with the same k-jet as f , i.e. jkg = jkf ,
is A-equivalent to f . The germ f is said to be A-finitely determined or finitely determined
if it is k-A-determined for some k.

Mather and Gaffney gave the characterization of finitely determined map germs in
terms of stable germs, [44]. We say f is a stable germ if every nearby germ is A-equivalent
to f .
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A deformation to s-parameters of a map germ f : (Cn, 0) → (Cp, 0) is a map germ
fs em O(s+ n, p) such that

fs : (Cs × Cn, (0, 0))→ (Cp, 0)

(u, x) 7→ fs(u, x)

where, fs(0, x) = f(x).

An unfolding to s-parameters of f is a map germ in O(s+ n, s+ p),

F : (Cs × Cn, (0, 0))→ (Cs × Cp, (0, 0))

(u, x) 7→ F (u, x) = (u, fs(u, x))

where fs is a deformation of f .
F is a trivial unfolding of f if there are unfoldings to s-parameters, R of identity in

Cn and L, of identity in Cp such that L ◦ F ◦R−1 = (id, f).

Two unfoldings F1 and F2 of f are isomorphic if F2 = L ◦ F1 ◦ R−1 where L and R
are unfoldings of identity.

A s-parameter unfolding F2 is induced by an unfolding F1 = (id, fs) to t-parameters,
if exists a map h : (Cs, 0)→ (Ct, 0) such that F2 is equal to h∗F1 = (id, fs(h(s), x)).

F is a versal unfolding of f if all unfolding of f is isomorphic to an induced unfolding
of F .

Let f : (Cn, 0) → (Cp, 0) be a finitely determined map germ . We say f is stable if
any unfolding F of it is trivial.

Definition 3.3. Let f : (Cn, 0) → (Cp, 0) be a finitely determined map germ. A 1-
parameter unfolding of f is a map germ F : (C × Cn, 0) → (C × Cp, 0) of the form
F (t, x) = (t, ft(x)) such that f0 = f . We say that an unfolding F is a stabilization of f if
there is a representative F : D × U → D × Cp, where D, U are open neighbourhoods of 0
in C, Cn respectively such that ft : U → Cp is stable for any t ∈ D \ {0}.

In range of nice dimensions in sense of Mather, it is known that a stabilization of a
finitely determined map germ always exist.

Next theorem relates finite determinacy with stability.

Theorem 3.4. [27] Let f : (Cn, 0) → (Cp, 0) be a map germ K-finitely determined.
Then, this germ is A-finitely determined if, and only if, for each representative of f ,
there exists a neighborhood U of 0 in Cn and V of 0 in Cp, f(U) ⊂ V , such that if
y ∈ V − {0}, f−1(y) ∩ Σ(f) ∩ U = {x1, . . . , xr}, then the multi-germ of f in {x1, . . . , xr}
is A-stable.
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3.2 The stable types in O(n, n)

As highlighted in the introduction, our aim is to compute the stable types of f using
a CA-system.

First we present the mathematical methods to obtain these stable types in the source.
We present here an explicit description of all stable types in the source and in the target
for corank 1 map germs from (Cn, 0) to (Cn, 0). This description is done in terms of
subschemes of multiple points of a germ f . The description of the 0-stable types is shown
by [Marar, Montaldi, Ruas, [26]]. In the following, the generalization for this description
for all r-stable types, with 0 ≤ r ≤ n− 1, is shown by [Jorge-Pérez, Levcovitz, Saia,[15]].

For this, we first give the following preliminary definition. Given a continuous mapping
f : X → Y on analytic spaces, we define the kth multiple points space of f as

Dk(f) := closure
{

(x1, x2, ..., xk) ∈ Xk : f(x1) = ... = f(xk) forxi 6= xj, i 6= j
}
.

Let f ∈ O(n, n) be a finitely determined map germ of corank 1. Choosing lin-
early adapted coordinates, we can write f(x, z) = (x1, . . . , xn−1, g(x, z)), where x =
(x1, . . . , xn−1) ∈ Cn−1, z ∈ C and g : (Cn, 0) → (C, 0) is a polynomial. For each par-
tition P = (r1, · · · , r`) of an integer m ≤ n, i.e, r1 + · · ·+ r` = m, we consider the subset
D`(f,P) of Cn−1 × C`, with ` := length(P), defined by

D`(f,P)=closure

 (x, z1, · · · , z`)∈Cn−1×C` :

zi 6= zj,
f(x, zi) = f(x, zj) and
f has a singularity of type
Arj at (x, zj)


where ‘closure’ means the analytic closure in Cn−1 × C`.

According to [26], if a corank 1 map germ f : (Cn, 0)→ (Cn, 0) isA-finitely determined,
then the singularity of f at 0 splits up into a number of non-degenerate zero-dimensional
stable singularities of a stable perturbation of f . A stable map germ f : (Cn, 0)→ (Cn, 0))
has an Ak singularity (k ≤ n) if it is A-equivalent to the germ, G(x1, . . . , xn−1, z) =
(x1, . . . , xn−1, z

k+1 + x1z
k−1 + · · ·+ xk−1z). Moreover, any stable corank 1 map germ is an

Ak for some natural number k.
We remark that when m = n, the subsets Dn(f,P) are called zero-schemes and are

related to the 0-stable types [26]. We will soon give a structure of subschemes to the sets
D`(f,P) as well. Nearby the (Ar1 + · · · + Ar`) = Ar1,··· ,r` multi-germs, there are points
in the target with (r1 + 1) + (r2 + 1) + · · · + (r` + 1) = m + ` pre-images. We define a
(m+ `)−tuple scheme in Cn−1 ×Cm+`, which, on the appropriate diagonal, specializes to
the ideal defining Ar1,··· ,r` multi-germs. (See Lemma 3.5).

We denote the coordinates of Cn−1 × Cm+` by

(x, z) = (x, z1
0 , · · · , z1

r1
, z2

0 , · · · , z2
r2
, · · · , z`0, · · · , z`r`)

and define the sheaf of ideals J `(f,P) = 〈h1, h2, · · · , hm+`−1〉 ⊂ OCn−1×Cm+` by
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hi :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z1
0 · · · (z1

0)i−1 g1
0 (z1

0)i+1 · · · (z1
0)m+`−1

...
...

...
...

...
...

1 z1
r1
· · · (z1

r1
)i−1 g1

r1
(z1
r1

)i+1 · · · (z1
r1

)m+`−1

...
...

...
...

...
...

1 z`
0
· · · (z`

0
)i−1 g`0 (z`0)i+1 · · · (z`

0
)m+`−1

...
...

...
...

...
...

1 z`r` · · · (z`r`)
i−1 g`r` (z`r`)

i+1 · · · (z`r`)
m+`−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z1
0 · · · (z1

0)i−1 (z1
0)i (z1

0)i+1 · · · (z1
0)m+`−1

...
...

...
...

...
...

1 z1
r1
· · · (z1

r1
)i−1 (z1

r1
)i (z1

r1
)i+1 · · · (z1

r1
)m+`−1

...
...

...
...

...
...

1 z`
0
· · · (z`

0
)i−1 (z`0)i (z`0)i+1 · · · (z`

0
)m+`−1

...
...

...
...

...
...

1 z`r` · · · (z`r`)
i−1 (z`r`)

i (z`r`)
i+1 · · · (z`r`)

m+`−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.1)

note that the denominator above is the Vandermonde determinant of the list
(z1

0 , · · · , z1
r1
, · · · , z`0, · · · , z`r` and gki := g(x, zki ). In Cn−1 × Cm+` there is a diagonal of

particular interest, namely,

∆(P) = {(x, z) ∈ Cn−1 × Cm+`|zki = zkj , ∀i, j = 0, · · · , rk, ∀k = 1, · · · , `}
which can be parametrized by (x, z1, · · · , z`):

(x, z) = (x, z1, · · · , z1, z2, · · · , z2, · · · , z`, · · · , z`) (3.1)

with zi repeated ri + 1 times. This corresponds to an embedding
j` : Cn−1 × C` → Cn−1 × Cm+`. We denote by j∗` : OCn−1×Cm+` → OCn−1×C` the induced
surjection.

Let I∆(P) = 〈zki − zk0 , i = 1, · · · , rk; k = 1, · · · , `〉 be the ideal defining ∆(P). Then j∗`
induces an isomorphism

OCn−1×Cm+`

I∆(P)

∼= OCn−1×C` . Note that a generic point of V (I∆(P)) is

one of the form (3.1) with zi 6= zj, for i 6= j.
Let J `

∆(f,P) be the sheaf of ideals in OCn−1×Cm+` defined by

J `
∆(f,P) := J `(f,P) + I∆(P)

and consider the ideal I`(f,P) := j∗` (J `
∆(f,P)) of OCn−1×C` . Then j∗` also induces an

isomorphism

j∗` :
OCn−1×Cm+`

J `
∆(f,P)

→ OCn−1×C`

I`(f,P)
. (3.2)

Next lemma shows us that at a generic point of ∆(P) we have D`(f,P)=V (J `
∆(f,P)),

that is, f has a singularity of type Arj at (x, zj) and f(x, z1) = · · · = f(x, z`). Therefore,
by an abuse of notation, we will call the subscheme V (I`(f,P)) ⊂ OCn−1×C` equipped

with the structural sheaf
OCn−1×C`

I`(f,P)
by D`(f,P) as well.
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Lemma 3.5. ([24], lemma 2.7) At a generic point of ∆(P) we have,

J `
∆(f,P) =

〈
∂g
∂z

(x, z1), · · · , ∂r1g
∂zr1

(x, z1), · · · , ∂g
∂z

(x, z`), · · · , ∂r`g
∂zr`

(x, z`)
〉

+ 〈g(x, zi)− g(x, z1); 2 ≤ i ≤ `〉+ I∆(P).

We remark that for the partition P = (1, · · · , 1) of m with 1 + · · · + 1 = m = `, we
have D`(f,P) = D`(f), where D`(f) denotes the set of ordinary `-multiple points of f .

For the partition P = (ri), then ri = m, ` = 1, and D1(f,P) = Σ1,··· ,1(f), where
Σ1,··· ,1(f) is the set of singularities of type Σ1,...,1 of f with 1, · · · , 1 repeated ri-times, i.e,
f has a singularity of type Ari .

Proposition 3.6 ([15]). Let f : (Cn, 0) → (Cn, 0) be a finitely determined map germ of
corank 1. Then, for any partition P = (r1, . . . , r`) of m ≤ n we have:

1. f is stable if and only if V
(
J `

∆(f,P)
)

is smooth of dimension n−m, or empty;

2. The ideal J `
∆(f,P) at 0 is either an ICIS of dimension n−m, or is empty;

Proof We denote by H` the map germ defined by the generators hi of the ideal J `(f,P)
and E(P) the map germ defined by the generators of the ideal I∆,P .

To prove the item 1., we have from 2.13 of [24] that f is stable of type Ari at 0 if
and only if the map germ

(
H`, E(P)

)
is a submersion, and this is equivalent to say that

D`(f,P) is smooth of dimension n−m.

2. Suppose that f is finitely determined and choose a representative f : U → V as in
the Geometric Theorem of Mather-Gaffney (see [44]), we shall show that for any partition
P of an m ≤ n and at any point (x, z) 6= (0, 0) the mapping (H`, E(P)) is a submersion.
If necessary we restrict U such that f is a singularity of type Ar1,...,r` , after reordering
if necessary, we can suppose that (x, z) is a generic point of I∆(P) for some partition
P = (r1, . . . , r`), hence (x, z) = (x, z1, · · · , z1, z2, · · · , z2, · · · , z`, · · · , z`). Now we suppose
that f is a singularity of type Ari in (x, zi). It follows by the Geometric Theorem that
the multi-germ of f at

{
(x, z1), . . . , (x, z`)

}
is stable, then by the theorem 2.13 of [24] the

mapping (H`, E(P)) is a submersion, thus for any point distinct from 0, the 2m + ` − 1
functions generating J `

∆(f,P) define a submersion, therefore the variety V
(
J `

∆(f,P)
)

is
an ICIS at 0 of dimension n−m. �

We will give now an explicit description of the stable types in the source and the target
of any finitely determined map germ f ∈ O(n, n) with corank 1.

For each partition P = (r1, . . . , r`) of m ≤ n, we denote by D`
1(F,P) the projection of

D`(F,P) to the (x, z)-space. We remember that each of the sets D`
1(F,P) is a subset of

Σ(f).
In the next theorem we will use the following notation.
Let X(f) := (f−1(∆(f))− Σ(f)). For each partition P of m ≤ n, we define the sets

X`
1(f,P) by,

X`
1(f,P) := f−1(f(D`

1(f,P)))−
(
D`

1(f,P) ∩ Σ(f)
)
.
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Theorem 3.7 ([15]). Let f ∈ O(n, n) be a finitely determined map germ of corank 1.
Then,

1. The stables types in the source are D`
1(f,P) ⊂ Σ(f) and X`

1(f,P) ⊂ X(f), for all
partitions P = (r1, . . . , r`) of all m ≤ n.

2. The stables types in the target are f(D`
1(f,P)) ⊂ ∆(f), for all partitions P =

(r1, . . . , r`) of each m ≤ n.

3. The dimensions of X`
1(f,P) and of f(D`

1(f,P)) are both n−m.

Proof 1. A stable map germ f ∈ O(n, n) has an Ak singularity if it is A-equivalent to
the germ

(x1, ...., xn−1, z)→ (x1, ...., xn−1, z
k+1 + x1z

n−1 + ...+ xk−1z).

Moreover, any stable corank 1 map germ is an Ak singularity for some natural number
k, hence the set of points in Cn where a stable map has an Ak singularity is a smooth
sub-manifold of codimension k. The image of this set by f is also a smooth sub-manifold
of codimension k. Since f is finitely determined, it follows by the Geometric criterion of
Mather-Gaffney, that there exist neighborhoods U and V of 0 in Cn such that f−1(0) ∩
U ∩ Σ(f) = 0 and for each y ∈ V , y 6= 0, the germ f : (Cn, S) → (Cn, y) is stable
(S = f−1(y) ∩ U ∩ Σ(f)), hence for each x ∈ S, the germ f : (Cn, x) → (Cn, y) is an Ak
for some k and these sub-manifolds in the discriminant are in general position. But this
occurs if and only if r1+r2+.....+rj = m ≤ n. We call such multi germ and AP-singularity
and the result follows from the Lemma 3.5.

2. and 3. From the corollary given in the page 19 of [12], we know that there exist
neighborhoods of the origin U1 in Cn−1×C` and U2 in Cn such that the map p : Dm(f,P)→
U2 induced by the projection U1 → U2 is proper and finite. Since f is proper and finite, the
map f ◦ p is also proper and finite, then V = (f ◦ p)(Dm(f,P)) is an analytic subvariety
n − m-dimensional, in particular, f(D`

1(f,P)) is n − m-dimensional. Since D`
1(f,P) is

n−m-dimensional and f is proper and finite, we also obtain that X`
1(f,P) is an analytic

space of dimension n−m. �

According to Proposition 3.7, (see too [26]), given an A-finitely determined map germ
f : (Cn, 0) → (Cn, 0), and a partition P of n, how many AP singularities are there in a
stabilization of f , in a suitably small neighbourhood of 0? This number is independent of
the particular stabilization choosen, and we denote it ]AP(f).

Theorem 3.8 ([26], Theorem 1). Let f(x1, . . . , xn−1, z) = (x1, . . . , xn−1, g(x, z)) be A-
finitely determined weighted-homogeneuos map germ, with weights (ω1, . . . , ωn−1, ω0) and
g with weighted-degree d. For any stabilization of f and any partition P of n

#Ap =
ωn−1

0

N(P)ω

n+`−1∏
j=1

(
d

ω0

− j)

with ω =
n−1∏
i=1

ωi.
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If the map germ f is of corank 1 and A-finite, but not weighted-homogeneuos, then
the ]AP(f), can be computed by the following result.

Theorem 3.9 ([26], Corollary 5). Let f(x1, . . . , xn−1, z) = (x1, . . . , xn−1, g(x, z)) be A-
finitely determined map germ. For any stabilization of f and any partition P of n

#Ap =
1

N(P)
dimC

OCn−1×C`

I`(f,P))
.

N(P) is the order of the subgroup of the permutation group S` which fixes P . S` acts on
C` by permuting the coordinates.

3.3 Algorithm for calculating ideals I`(f,P)

We show here a generalization, for all m ≤ n, of the algorithm given in [26] for the
case m = n. This algorithm idealsource computes the ideals I`(f,P)) of the stable
types in the source for all partition P of m ≤ n. We implemented this algorithm using
the software Maple and Singular. See Subsection 5.1 for source code in Singular and
Maple.

idealsource

Inputs: f := (x, g(x, z)) and P = (r1, . . . , r`) of m ≤ n.
Create variables L := (x, z) = (x, z1

0 , · · · , z1
r1
, z2

0 , · · · , z2
r2
, · · · , z`0, · · · , z`r`).

For n = 1, . . . ,m+ `− 1 do:
V:= Vandermonde(L);
A:=V;

For i = 1, . . . ,m+ `− 1 do:
A:=subs(z = A[i,2], g);

End i;
H[n-1]:=subs(Diagonal, det(A)/det(V));

End n;
Output: < H[1] , . . . , H[m+`-1] >.

idealsource.lib is a library in Singular available in [28].

Remark 3.10. idealsource works with a ring of parameters, but with unfolding can be
faster. For example if f(x, y) = (x, y4 +xy) and fu(x, y) = (x, y4 +xy+uy2) and partition
= [1,1], use:

With parameters: ring r=(0,u),(x,y),dp;idealsource([x,y4+xy+uy2],[1,1]);

As unfolding: ring r=0,(u,x,y),ds;idealsource([u,x,y4+xy+uy2],[1,1]);

Below applications about good real and maximal deformation by using idealsource.

Definition 3.11. A stable deformation of a finitely determined real map germ from (Rn, 0)
to (Rn, 0) is maximal (or an M-deformation) if it exhibits all of the 0-dimensional stable
singularities present in its complexification.
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Theorem 3.12 (Rieger-Ruas, [39]). All A-simple rank n−1 germs f : (Rm, 0)→ (Rn, 0),
where m ≥ n, have an M-deformation.

Definition 3.13. A stable deformation of a finitely determined real map germ from (Rn, 0)
to (Rn, 0) is a good real deformation if the real image has (n− 1)th homology of rank
µ∆(f) (discriminant Milnor number), so that inclusion of real image in complex image
induces an isomorphism on Hn.

Theorem 3.14 ([4], Theorem 4.6). The discriminant ∆(ft) of a stabilisation or weak
stabilisation of a finitely determined map germ f : (Cn, 0) → (Cp, 0) with n ≥ p, has the
homotopy type of a wedge of spheres of dimension p− 1.

3.4 Application 1: Good real deformation for f(x, z) = (x, z6 +xz)

For finitely determined map germs f ∈ O(2, 2) of corank 1, D2(f, (1, 1)) = D2(f) ⊂
C2 × C is the set of source double points of f and D2

1(f, (1, 1)) = D(f) ⊂ Σ(f) ⊂ C2.
D1(f, (2)) = Σ1,1(f) ⊂ Σ(f) is the set of cusps of f . We denote by A1,1(f) = f(D(f)) and
A2(f) = f(Σ1,1(f)) the 0-stable singularities on target. Then A1,1(f) is the set of target
ordinary double points of f and A2(f) is the set of cusps of f in the target.

Normal form for stable types in O(2, 2):

For finitely determined map germs f ∈ O(2, 2), the stable types are in the tables Table
1.1 and Table 1.2 with its normal form.

Table 1.1: Stable monogermes in O(2, 2)
Name Σ(i) Ak Normal form

Submersion Σ(0) A0 (x, z)

Fold Σ(1) A1 (x, z2)

Cusp Σ(1,1) A2 (x, z3 + xz)

Table 1.2: Stable multigerms in O(2, 2)
Name Ak Normal form
Ordinary double
points

A1,1 {(x, z2); (x2, z)}

Figure 3: 0-stable types: A2 : (x, y3 + xy) and A1,1 : {(x, y2); (x2, y)}.

The notation for Ak singularities was introduced by Arnol’d, [1]. The symbol Σi is the
notation of Thom-Boardman, for singularities of type Σi, [2].
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Theorem 3.15 ([4],Lemma 2.3). µ∆(f) = µ(Σ(f)) + ]A1,1 = µ(∆(f))− (2]A2 + ]A1,1).

Remark 3.16. µ∆(f) is the discriminant Milnor number and µ(∆(f)) is the usual Milnor
number, here ∆(f) is a curve with isolated singularity.

Example 3.17. Consider the map germ f : (C2, 0)→ (C2, 0), defined by:

f(x, z) = (x, z6 + xz).

Rieger studied the geometry of the real stable perturbations of this f , [38].
Some invariants of this germ are:

]A2 = 4, ]A1,1 = 6, µ(Σ(f)) = 0, µ(∆(f)) = 20

and the discriminant set ∆(ft) has the homotopy type of a wedge of 6 circles, since that

µ∆(f) = 6.

Consider de following versal deformation fv,u,t,w,p,q(x, z) = (x, z6 + xz + vz2 + uz3 +
tz4 + wz8 + pz9 + qz14) of f . Using the algorithm idealsource, for the partitions [1,1]
and [2] of m = n = 2, we obtain the following ideals:

> LIB "idealsource.lib";

> ring r=(0,v,u,t,w,p,q),(x,z),dp;

> idealsource([x,z^6+xz+vz2+uz3+tz4+wz8+pz9+qz14],[1,1]);

//f:(C^2,0)--->(C^2,0) ; Partition = [1,1]

H[1]=22*q*z01^12*z02+52*q*z01^11*z02^2+76*q*z01^10*z02^3+94*q*z01^9*z02^4

+106*q*z01^8*z02^5+112*q*z01^7*z02^6+112*q*z01^6*z02^7+

106*q*z01^5*z02^8+94*q*z01^4*z02^9+76*q*z01^3*z02^10+

52*q*z01^2*z02^11+22*q*z01*z02^12+12*p*z01^7*z02+27*p*z01^6*z02^2+

36*p*z01^5*z02^3+39*p*z01^4*z02^4+36*p*z01^3*z02^5+27*p*z01^2*z02^6+

12*p*z01*z02^7+10*w*z01^6*z02+22*w*z01^5*z02^2+28*w*z01^4*z02^3+

28*w*z01^3*z02^4+22*w*z01^2*z02^5+10*w*z01*z02^6+6*z01^4*z02+

12*z01^3*z02^2+12*z01^2*z02^3+6*z01*z02^4+2*t*z01^2*z02+

2*t*z01*z02^2+x

H[2]=11*q*z01^12+44*q*z01^11*z02+71*q*z01^10*z02^2+92*q*z01^9*z02^3+

107*q*z01^8*z02^4+116*q*z01^7*z02^5+119*q*z01^6*z02^6+

116*q*z01^5*z02^7+107*q*z01^4*z02^8+92*q*z01^3*z02^9+71*q*z01^2*z02^10

+44*q*z01*z02^11+11*q*z02^12+6*p*z01^7+24*p*z01^6*z02+36*p*z01^5*z02^2

+42*p*z01^4*z02^3+42*p*z01^3*z02^4+36*p*z01^2*z02^5+24*p*z01*z02^6+

6*p*z02^7+5*w*z01^6+20*w*z01^5*z02+29*w*z01^4*z02^2+32*w*z01^3*z02^3+

29*w*z01^2*z02^4+20*w*z01*z02^5+5*w*z02^6+3*z01^4+12*z01^3*z02+

15*z01^2*z02^2+12*z01*z02^3+3*z02^4+t*z01^2+4*t*z01*z02+t*z02^2-v

H[3]=12*q*z01^11+22*q*z01^10*z02+30*q*z01^9*z02^2+36*q*z01^8*z02^3+

40*q*z01^7*z02^4+42*q*z01^6*z02^5+42*q*z01^5*z02^6+40*q*z01^4*z02^7+

36*q*z01^3*z02^8+30*q*z01^2*z02^9+22*q*z01*z02^10+12*q*z02^11+
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7*p*z01^6+12*p*z01^5*z02+15*p*z01^4*z02^2+16*p*z01^3*z02^3+

15*p*z01^2*z02^4+12*p*z01*z02^5+7*p*z02^6+6*w*z01^5+10*w*z01^4*z02+

12*w*z01^3*z02^2+12*w*z01^2*z02^3+10*w*z01*z02^4+6*w*z02^5+4*z01^3+

6*z01^2*z02+6*z01*z02^2+4*z02^3+2*t*z01+2*t*z02+u

//To access the ideal H, type: setring MR; H;

> ring r=(0,v,u,t,w,p,q),(x,z),dp;

> idealsource([x,z^6+xz+vz2+uz3+tz4+wz8+pz9+qz14],[2]);

//f:(C^2,0)--->(C^2,0) ; Partition = [2]

H[1]=168*q*z01^13+63*p*z01^8+48*w*z01^7+24*z01^5+8*t*z01^3+3*u*z01^2-x

H[2]=91*q*z01^12+36*p*z01^7+28*w*z01^6+15*z01^4+6*t*z01^2+3*u*z01+v

Analysing these ideals, there exists real parameters v, u, t, w, p, q such that all ten 0-stable
singularities, appear in real coordinates. For instance if u = w = p = q = 0, v = −t and
t < −5

3
, then all 4 cusps appear in real coordinates in the discriminant. If u = w = p =

q = 0, v = −t and t ∈ (−60
11
,−4) ∪ (−4,−3), then all 6 distinct double points appear in

real coordinates in the discriminant. See Figure 4 (left).
With z01 = z, z02 = z2, u = w = p = q = 0, v = −t, we have the following 1-parameter

deformation ft(x, z) = (x, z6 + xz − tz2 + tz4), and

D2(ft, (1, 1)) = V (〈6z4z2 + 12z3z22 + 12z2z23 + 6zz24 + 2tz2z2 + 2tzz22 + x,
−3z4 − 12z3z2− 15z2z22 − 12zz23 − 3z24 − tz2 − 4tzz2− tz22 − t,
4z3 + 6z2z2 + 6zz22 + 4z23 + 2tz + 2tz2〉).

D1(ft, (2)) = V (〈−24z5 − 8tz3 + x, 15z4 + 6tz2 − t〉.
D2(ft, (1, 1)) ⊂ C(t)[x, z, z2] is the 0-dimensional double points set of ft(x, y).

D1(ft, (2)) ⊂ C(t)[x, z] is the 0-dimensional cusp of ft(x, y).

Figure 4: ∆(fu,v) and wedge of 6-circles.

Therefore, this germ is maximal because all ten 0-stable singularities appear with real
coordinates and has a good real deformation because the number of circles in bouquet is
6 = µ∆(f), see Figure 4.
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3.5 Application 2: Real geometry for the germ fu,v(x, y, z) =
(x, y, z6 + yz + xz2 + uz3 + vz4)

The objective in this example is to calculate all possible real r-stable singularities of
the following deformation fu,v(x, y, z) = (x, y, z6 + yz + xz2 + vz4 + uz3) of the map germ
f(x, y, z) = (x, y, z6 + yz + xz2).

First we show in the tables Table 1.1 and Table 1.2 the normal form for stable germs
and multigerms in O(3, 3).

Table 1.1: Stable monogermes in O(3, 3)
Name Σ(i) Ak Normal form

Submersion Σ(0) A0 (x, y, z)

Fold Σ(1) A1 (x, y, z2)

Cuspidal edge Σ(1,1) A2 (x, y, z3 + xz)

Swallowtail Σ(1,1,1) A3 (x, y, z4 + xz + yz2)

Table 1.2: Stable multigerms in O(3, 3)
Name Ak Normal form
Ordinary double
points

A1,1 {(x, y, z2 ;
(x, y2, z)}

Normal crossing of a
plane with cuspidal
edge

A1,2 {(x, y2, z) ;
(x, y, z3 + xz)}

Ordinary triple points A1,1,1 {(x, y, z2) ;
(x, y2, z) ;
(x2, y, z)}

Remark 3.18. Let f : (C3, 0) → (C3, 0) be an A-finitely determined map germ . Ac-
cording to Theorem 3.7 and the Tables 1.1 and 1.2 above, the germs of stable singularities
appearing on the discriminant set of a stabilization of f are:

1. normal crossing of two planes, corresponding to the 1-dimensional curve of double
points set, that are singularities of type A1,1. Figure 5 b).

2. normal crossing of three planes, corresponding to the ordinary triple points. These
singularities are of type A1,1,1. Figure 6 c).

3. the 1-dimensional cuspidal edge, singularities of type A2. Figure 5 a).

4. points of type A3, also called swallowtail. Figure 6 a).

5. the transversal intersection of a cuspidal edge with a plane, that are points of type
A1,2. Figure 6 b).
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Figure 5: 1-stable singularities, (C3, 0)→ (C3, 0).

Figure 6: 0-stable singularities, (C3, 0)→ (C3, 0).

Figure 7: All real r-stable singularities, (C3, 0)→ (C3, 0).
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In the Figure 7, we can see all real stable singularities appearing in discriminant set of
one deformation of some f : (C3, 0)→ (C3, 0).

To obtain these results we describe the real geometry of this deformation, this means
to stratify the parameters space according to the multiple points set that appear in the
source and consequently the singularities that appear in the discriminant. For this, first
we describe the ideals in the source that define all multiple point spaces. To obtain the
strata in the target, we apply f in the strata of the source.

Consider the two parameters deformation of the germ f(x, y, z) = (x, y, z6 + yz+xz2):

fu,v(x, y, z) = (x, y, z6 + yz + xz2 + vz4 + uz3).

For (real) (u, v), we describe all singularities of fu,v, and to investigate for which real pa-
rameters (u, v) we can find a germ fu,v that has critical points (in the source) whose image
by fu,v form the 0-stable real singularities in the discriminant ∆(fu,v) = fu,v(Σ(fu,v)), and
how many of them appear.

In a stabilization of this complex map germ

f(x, y, z) = (x, y, z6 + yz + xz2),

there are
]A3 = 3, ]A1,2 = 6, ]A1,1,1 = 1.

However, for all possible (u, v) we shall show that it is not possible to obtain all these
ten 0-stable singularities in real coordinates.

Question: For a fixed pair (u, v), how many real isolated singularities appear in the
discriminant of fu,v?

Calculating the number of real A3 (swallowtail)

> ring r=(0,u,v),(x,y,z),dp;

> idealsource([x,y,z6+yz+xz2+vz4+uz3],[3]);

//f:(C^3,0)--->(C^3,0) ; Partition = [3]

H[1]=36*z01^5+(4*v)*z01^3+y

H[2]=45*z01^4+(6*v)*z01^2-x

H[3]=20*z01^3+(4*v)*z01+(u)

//To access the ideal H, type: setring MR; H;

Renaming z01 = z, we have

I1(f, (3)) := 〈36z5 + 4vz3 + y, 45z4 + 6vz2 − x, 20z3 + 4vz + u〉.
Once found values for z, then x and y are obtained trivially by the first two generators.
Then, it is enough to analyze the last generator: 20z3 + 4vz + u = 0.
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DA3 := 64v3 + 135u2 is the discriminant root of the polynomial 20z3 + 4vz + u.

In this case we always have real points A3, but in different number, as we see in Figure
8.

]A3 (real)
white 1
gray 3

Figure 8: DA3 := 64v3 + 135u2.

Calculating the number of real A1,1,1 (triple fold)

> ring r=(0,u,v),(x,y,z),dp;

> idealsource([x,y,z6+yz+xz2+vz4+uz3],[1,1,1]);

//f:(C^3,0)--->(C^3,0) ; Partition = [1,1,1]

H[1]=2*z01^2*z02^2*z03+2*z01^2*z02*z03^2+2*z01*z02^2*z03^2+y

H[2]=z01^2*z02^2+4*z01^2*z02*z03+4*z01*z02^2*z03+z01^2*z03^2+

4*z01*z02*z03^2+z02^2*z03^2-x

H[3]=2*z01^2*z02+2*z01*z02^2+2*z01^2*z03+8*z01*z02*z03+2*z02^2*z03+

2*z01*z03^2+2*z02*z03^2+(u)

H[4]=z01^2+4*z01*z02+z02^2+4*z01*z03+4*z02*z03+z03^2+(-v)

H[5]=2*z01+2*z02+2*z03

//To access the ideal H, type: setring MR; H;

Renaming z01 = z, z02 = z2, z03 = z3, we have

I3(f, (1, 1, 1)) := 〈2z2z2
2z3 + 2z2z2z

2
3 + 2zz2

2z
2
3 + y, z2z2

2 + 4z2z2z3 + z2z2
3 + 4zz2

2z3 +
4zz2z

2
3 + z2

2z
2
3 − x, 2z2z2 + 2z2z3 + 2zz2

2 + 8zz2z3 + 2zz2
3 + 2z2

2z3 + 2z2z
2
3 + u, z2 + 4zz2 +

4zz3 + z2
2 + 4z2z3 + z2

3 − v, 2z + 2z2 + 2z3〉.
The resultant of the fourth and fifth generators of I3(f, (1, 1, 1)) in relation to z3, is:

re1 := 8z2 + 8zz2 + 8z2
2 + 4v.

The resultant of the third and fifth generators of I3(f, (1, 1, 1)) in relation to z3, is:

re2 := −8z2z2 − 8zz2
2 + 4u.
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The resultant of re1 and re2 in relation to z2, is:

re3 := 4096z6+4096vz4+4096uz3+1024v2z2+2048uvz+1024u2 = 1024(2z3+vz+u)2.

(Which depends only of variable z).

Thus, ]A1,1,1 depends on the roots of 2z3 + vz + u and DA1,1,1 := 2v3 + 27u2 is the
discriminant root of polynomial 2z3 + vz + u.

In this case, we always have real A1,1,1 points, see Figure 9.

]A1,1,1 (real)
white 0
gray 1
black 0

Figure 9: DA1,1,1 := 2v3 + 27u2.

Calculating the number of real A1,2 (fold-cusp)

> ring r=(0,u,v),(x,y,z),dp;

> idealsource([x,y,z6+yz+xz2+vz4+uz3],[1,2]);

//f:(C^3,0)--->(C^3,0) ; Partition = [1,2]

H[1]=6*z01^3*z02^2+12*z01^2*z02^3+6*z01*z02^4-y

H[2]=6*z01^3*z02+18*z01^2*z02^2+18*z01*z02^3+3*z02^4+x

H[3]=2*z01^3+12*z01^2*z02+18*z01*z02^2+8*z02^3+(-u)

H[4]=3*z01^2+6*z01*z02+6*z02^2+(v)

//To access the ideal H, type: setring MR; H;

Renaming z01 = z, z02 = z2, we have

I2(f, (1, 2)) := 〈6z3z2
2 + 12z2z3

2 + 6zz4
2 − y, 6z3z2 + 18z2z2

2 + 18zz3
2 + 3z4

2 + x,
2z3 + 12z2z2 + 18zz2

2 + 8z3
2 − u, 3z2 + 6zz2 + 6z2

2 + v〉.
The resultant of the third and fourth generators of I2(f, (1, 2)) in relation to z2, is:

re := 1080z6 + 1296vz4 + 864uz3 + 504v2z2 + 432uvz + 64v3 + 216u2.

DA1,2 := u(64v3 + 135u2)(2v3 + 27u2) is the discriminant root of polynomial re. In this
case we have maximum of four real points of type A1,2, see Figure 10.
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]A1,2 (real)
white 0

dark gray 2
gray 4

Figure 10: DA1,2 := u(64v3 + 135u2)(2v3 + 27u2).

]A3 ]A1,1,1 ]A1,2

white 1 0 0
dark gray 3 0 2

gray 3 1 4
line u = 0, v < 0 3 1 3

Figure 11: Bifurcation set of all 0-stable singularities.

Thus, if parameters (u, v) are in region of color gray of Figure 11, we have the maximum
number 8 < 10 of real isolated singularities.

Real topology of the discriminant of f(x, y, z) = (x, y, z6 + yz + xz2)

In this part we describe the topological properties of the discriminant of deformation
fu,v(x, y, z) = (x, y, z6 + yz + xz2 + uz3 + vz4). We show how to obtain the rank of
the second homology of the discriminant using its Euler characteristic, moreover show
explicitly the polyhedra which form this homology whose vertices are the 0-singularities
of the discriminant of fu,v.

First we list all definition ideals of r-stable types (r = 0, 1, 2) singularities of f in the
source. If one want to obtain the definition ideals of the r-stable types in the target,
use eliminate command in Singular or Maple or other program of your preference. In
chapter 5, we will show another way to obtain the multiple point spaces in the target
using presentation matrix and Fitting ideals. We remark that in this text, the curves in
blue color are the cuspidal edges and curves in red color are double points curve. Points
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in black color are points of type A1,1,1, points in yellow color are of type A1,2 and points
in green color are points of type A3.

1. The 2-dimensional stable types in the source and in the target are respectively the
critical and discriminant set:

Σ(fu,v) = V 〈6z5 + 4vz3 + 3uz2 + 2xz + y〉.

∆(fu,v) := f(Σ(fu,v)) = V 〈46656Z5 + 62208XvZ4 + (−13824v3 + 34992u2)Z4 +
17280v2X2Z3−46656uv2Y Z3+13824X3Z3+77760uXY Z3+32400vY 2Z3+(−9216v4−
3888u2v)XZ3 + (1024v6 + 8640u2v3 + 8748u4)Z3 + 9216vX4Z2 − 3456uvX2Y Z2 −
6480v2XY 2Z2 +43200X2Y 2Z2 +27000uY 3Z2 +(−4352v3−8640u2)X3Z2 +(512v5 +
8208u2v2)X2Z2+(−5760uv3+21384u3)XY Z2+(−192v4−27540u2v)Y 2Z2+(−576u2v4−
4860u4v)XZ2 + (768uv5 + 5832u3v2)Y Z2 + (108u4v3 + 729u6)Z2 − 512v2X5Z +
2496uv2X3Y Z+1024X6Z−6912uX4Y Z+10560vX3Y 2Z−19800uvXY 3Z−1500v2Y 4Z+
22500XY 4Z + (64v4 + 576u2v)X4Z + (−4816v3 + 9720u2)X2Y 2Z + (−16u2v3 −
108u4)X3Z + (−320uv4 − 2808u3v)X2Y Z + (576v5 + 4536u2v2)XY 2Z + (120uv3 +
1350u3)Y 3Z + (72u3v3 + 486u5)XY Z + (−24u2v4 − 162u4v)Y 2Z − 128X4Y 2v2 +
560X2Y 3uv2 +256X5Y 2−1600X3Y 3u+2000X2Y 4v−3750Y 5uv+3125Y 6 +(16v4 +
144u2v)X3Y 2+(−900v3+2250u2)XY 4+(−4u2v3−27u4)X2Y 2+(−72uv4−630u3v)XY 3+
(108v5 + 825u2v2)Y 4 + (16u3v3 + 108u5)Y 3〉.

2. The 1-dimensional stable types in the source are:

D1(fu,v, (2)) = V 〈24z5 + 8vz3 + 3uz2 − y, 15z4 + 6vz2 + 3uz + x〉.

D2(fu,v, (1, 1)) = V 〈6z4z2 +12z3z2
2 +12z2z3

2 +6zz4
2 +2vz2z2 +2vzz2

2 +y, 3z4 +12z3z2 +
15z2z2

2 +12zz3
2 +3z4

2 +vz2 +4vzz2 +vz2
2−x, 4z3 +6z2z2 +6zz2

2 +4z3
2 +2vz+2vz2 +u〉.

eliminating the variable z2 we obtain

D2
1(fu,v, (1, 1)) = V 〈y+2zx+3z2u+4z3v+6z5, 256x3−27u4 +144u2vx+1152zux2−

128v2x2 + 108zu3v− 4u2v3 + 1944z2u2x− 96zuv2x+ 16v4x+ 1344z2vx2 + 972z3u3 +
288z2u2v2 + 16zuv4 + 5040z3uvx − 336z2v3x + 2448z4x2 + 4860z4u2v − 16z3uv3 +
32z2v5 + 8208z5ux + 2256z4v2x + 6912z6u2 + 5904z5uv2 − 112z4v4 + 9936z6vx +
19008z7uv + 1712z6v3 + 8640z8x+ 15120z9u+ 11088z8v2 + 19440z10v + 10800z12〉.

3. The 0-dimensional stable types in the source are:

D1(fu,v, (3)) = V 〈36z5 + 4vz3 + y, 45z4 + 6vz2 − x, 20z3 + 4vz + u〉.

D2(fu,v, (1, 2)) = V 〈6z3z2
2 +12z2z3

2 +6zz4
2−y, 6z3z2 +18z2z2

2 +18zz3
2 +3z4

2 +x, 2z3 +
12z2z2 + 18zz2

2 + 8z3
2 − u, 3z2 + 6zz2 + 6z2

2 + v〉.
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D3(fu,v, (1, 1, 1)) = V 〈2z2z2
2z3 +2z2z2z

2
3 +2zz2

2z
2
3 +y, z2z2

2 +4z2z2z3 +z2z2
3 +4zz2

2z3 +
4zz2z

2
3 +z2

2z
2
3−x, 2z2z2 +2z2z3 +2zz2

2 +8zz2z3 +2zz2
3 +2z2

2z3 +2z2z
2
3 +u, z2 +4zz2 +

4zz3 + z2
2 + 4z2z3 + z2

3 − v, 2z + 2z2 + 2z3〉.

eliminating the variables z2 and z3 we obtain

D2
1(fu,v, (1, 2)) = V 〈12x + 18zu + v2 + 30z2v + 45z4, 6y − zv2 − 6z3v − 9z5, 27u2 +

54zuv + 8v3 + 108z3u+ 63z2v2 + 162z4v + 135z6〉.

D3
1(fu,v, (1, 1, 1)) = V 〈u+ zv + 2z3, 4x− v2, 2y + zv2 + 2z3v〉 ⊂ C3.

Case: 8 real points in the target

Take parameters 0 6= u, v in gray color region in Figure 11. Let V = vertices, A = lines,
F = faces. For this case we have 8V ; 15A; 10F .

Figure 12: Case with 8 real points in the target.

Therefore the Euler characteritic of ∆(fu,v) is:

χ(∆(fu,v)) = V − A+ F = 8− 15 + 10 = 3.

On the other side,

χ(∆(fu,v)) = rank H0(∆(fu,v))− rank H1(∆(fu,v)) + rank H2(∆(fu,v)).

As ∆(fu,v) is simply connected, then rank H0(∆(fu,v)) = 1 and rank H1(∆(fu,v)) = 0.
Therefore,

3 = 1− 0 + rank H2(∆(fu,v)),

and we easily obtain rank H2(∆(fu,v)) = 2, or in other words, 2 spheres in the bouquet.
We remark that is possible to obtain only 2 polyhedra, or 2 spheres, Figure 12.
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Case: 7 real points in the target

Take parameters u, v in line u = 0, v < 0 in Figure 11. In this case we have 7V , 14A,
11F .

Therefore the Euler characteritic of ∆(fu,v) is:

χ(∆(fu,v)) = V − A+ F = 7− 14 + 11 = 4.

On the other side,

χ(∆(fu,v)) = rank H0(∆(fu,v))− rank H1(∆(fu,v)) + rank H2(∆(fu,v)).

As ∆(fu,v) is simply connected, then rank H0(∆(fu,v)) = 1 and rank H1(∆(fu,v)) = 0.
Therefore,

4 = 1− 0 + rank H2(∆(fu,v)),

and
rank H2(∆(fu,v)) = 3,

or in other words, we have 3 spheres in the bouquet.

Figure 13: 7V ; 14A; 11F .

With 8 real points in the target, we have a wedge of 2 spheres.

With 7 real points in the target, we have a wedge of 3 spheres.

With p < 7 real points in the target, the number of spheres in the bouquet is less than
two.
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Figure 14: Σ(fu,v), u = 0, v < 0.

Figure 15: ∆(fu,v), u = 0, v < 0.
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4 Multiple point spaces in the target via Fitting ide-

als

The multiple point spaces of a map germ from (Cn, 0) to (Cp, 0) with n ≥ p play an
important role in the study of its geometry, as well as the topology of the image of a stable
perturbation. The kth target multiple points space Mk(f) is the closure in the image of
the set of points having k or more preimages, counting multiplicities.

When f : X → Y is a finite analytic map of complex manifolds, the space Mk(f) has
a natural analytic structure as the subspace of Y defined by the (k − 1)’st Fitting ideal
Fk−1(f∗OX ) of the pushforward f∗OX . This structure is good when dimY = dimX + 1,
X Cohen-Macaulay and Y smooth.

In [Mond-Pellikaan, [33]] is described an algorithm to compute a presentation of the
pushforward module f∗OX for a finite map germ f : X → (Cn+1, 0), where X is Cohen-
Macaulay of dimension n. The application of this algorithm in general is not an easy
task and it is a challenge to find the presentation matrix, even in simple cases, because
it is necessary the computation of Groebner bases. For the case f : (Cn, 0) → (Cn, 0) of
corank 1, as X = Σ(f) is an n-dimensional Cohen-Macaulay variety, then we can apply the
algorithm of Mond-Pellikan to obtain a presentation. For this case with f in its pre-normal
form it is possible to obtain a presentation without use Groebner bases, [Miranda-Saia,
[30]], and moreover we present a fast implementation in Maple and Singular of the
algorithm of Mond and Pellikaan, showing explicitly how to compute the elements of the
polynomial presentation matrices for such maps.

For general maps f : X → (Cn+1, 0), where X is Cohen-Macaulay of dimension n,
[Hernandes, Miranda, Peñafort-Sanchis, [13]], describe an algorithm and implementation
in Singular to compute a presentation of the pushforward module f∗OX for a finite map
germ. The algorithm is based on a method by [Mond and Pellikaan,[33]], but introduces
an improvement which allows to circumvent certain problems, concerning the limitation
to polynomial inputs and outputs of commutative algebra systems, such as Singular
[5]. As we will see, this improvement also makes the algorithm more efficient from a
computational point of view. The reader can find in [Miranda and Peñafort-Sanchis,[31]]
a Singular library containing an implementation of the algorithm.

In this chapter we give some applications to problems in singularity theory, computed
by means of an implementation, called presmatrix, of presentation matrices in the soft-
ware Singular. We show the computation of target and source multiple-point schemes
for map germs f : (Cn, 0)→ (Cn+1, 0), discriminants and certain topological invariants of
maps – leading, for example, to the answer of a question, due to Gaffney and Mond, about
the topological classification for corank 2 map germs from C2 to C2. All these applications
are based on Fitting ideals, which play a crucial role in the theory of singularities of map
germs and in enumerative geometry (see for instance [Kleiman, Lipman and Ulrich,[20]].

It is worth saying that the Singular implementation of the algorithm has already
been used in the works of other authors: In [Ballesteros, Oréfice-Okamoto and Tomazella,
[35]], the authors use it to compute discriminant curves of map germs from a complete
intersection surface to the plane. Oset Sinha, Ruas and Wik Atique have used the algo-
rithm to compute the image of a stable map germ of corank 2 from C8 to C9, which plays
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an important role in their work on the extra-nice dimensions [Oset Sinha, Ruas and Wik
Atique, [37]]. Recently, O. N. Silva, [42], used the algorithm to compute source double
points of certain maps as in Section 4.3.3, obtaining the first known counter-example to
a conjecture by M. A. S. Ruas, on the equivalence between Whitney equisingularity and
Topological triviality.

In this chapter we will describe and apply these algorithms with several examples.

For convenience to the reader, we describe Mond-Pellikaan’s original method to obtain
presentation matrices.

Background for presentation matrix

Let M be a module over a commutative unitary ring R. A presentation of M is an
exact sequence

Rp λ−→ Rq ψ−→M −→ 0.

If M admits a presentation, then we say that M is a finitely presented module, and any
matrix Λ associated to λ is called a presentation matrix of M . It is well known that any
finitely generated module over a Noetherian ring is finitely presented (see [10]).

If M is a finitely presented module as above, then its k-th Fitting ideal is given by

Fk(M) =


0 if k < 0;

〈minors of order q − k of Λ〉 if 0 ≤ k < min(q, p);
R if min(q, p) ≤ k.

Fitting ideals are invariant under module isomorphisms and they do not depend on the
chosen presentation of M (see [21]).

Let f : X → Y be a finite map germ and OX ,OY the rings of holomorphic functions
of X and Y . The pushforward module f∗OX is just OX , regarded as an OY-module via f .
Finiteness of f implies that f∗OX is finite, and hence finitely presented. For simplicity,
we write the corresponding Fitting ideals as Fk(f) = Fk(f∗OX ). As shown by [Mond and
Pellikaan, [33]], the kth Fitting ideal of f∗OX defines the (k + 1)th multiple points space
of f in Y , which we write as Mk(f) = V (Fk−1(f)).

4.1 Mond-Pellikaan algorithm for constructing a presentation

Let X be an n-dimensional germ of Cohen Macaulay space, and let

f : X → (Cn+1, 0)

satisfy the following extra condition: If we let

f̃ : X → (Cn, 0),

be the germ obtained by composing f with the projection from (Cn+1, 0) to (Cn, 0) which
forgets the last coordinate, then f̃ is a finite map germ. Since our interest is to obtain a
computer implementation, we are going to switch from the holomorphic setting of Mond
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and Pellikaan to the rational setting software like Singular can handle. This is mostly a
matter of language, and the results of Mond and Pellikaan apply here exactly in the same
way.

Let A = C[X, Y ]〈X,Y 〉 be the localization at the maximal ideal at the origin of the ring

of polynomials in the n+1 variables X = X1, . . . , Xn and Y . We denote Ã = C[X]〈X〉 and
B = (C[x]/I)〈x〉, with variables x = x1, . . . , x`, and assume that B is a Cohen-Macaulay
ring of dimension n. Let

φ : A→ B

be a morphism of local rings given by Xi 7→ fi, i = 1, . . . , n and Y 7→ fn+1, for some
polynomials fj ∈ C[x]. Write

φ̃ : Ã→ B

for the restricted morphism, and assume that B is minimally generated by g1, . . . , gh as an
Ã-module. Since B is generated by g1, . . . , gh, there exist αij ∈ Ã, 1 ≤ i, j ≤ h, satisfying
the equations

Y gi =
h∑
j=1

αijgj, for every 1 ≤ i ≤ h. (4.2)

Let λ : Ah → Ah be given by multiplication by the matrix Λ whose entries are

Λij = αij − δijY,

where δij stands for the Kronecker delta function.
If ψ : Ah → B is the epimorphism given by ei 7→ gi, where ei ∈ Ah is the element whose

only non-zero entry is 1 in the ith position, then the inclusion Im λ ⊆ Ker ψ follows from
(4.2). Mond and Pellikaan show that indeed the sequence

Ah
λ−→ Ah

ψ−→ B −→ 0 (4.3)

is exact [33]. Therefore, the matrix

Λ =


α11 − Y α12 · · · α1h

α21 α22 − Y · · · α2h
...

...
. . .

...
αh1 αh2 · · · αhh − Y


is a presentation matrix for B.

Example 4.1. Let f : (C2, 0)→ (C3, 0) be the cross-cap map (Figure 16), given by

(x, y) 7→ (x, y2, xy).

Let A = C[X1, X2, Y ]〈X1,X2,Y 〉, Ã = C[X1, X2]〈X1,X2〉 and B = C[x, y]〈x,y〉 and consider the
ring homomorphism A→ B given by X1 7→ x,X2 7→ y2 and Y 7→ xy.
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M1(f)

1

M2(f)

1

Figure 16: Image of a cross-cap (Whitney umbrella).

Observe that B is an Ã-module minimally generated by g1 = 1 and g2 = y, and thus
we can apply Mond-Pellikaan algorithm. From the equalities

Y · g1 = xy · g1 = x · g2 = X1 · g2 and Y · g2 = xy · g2 = xy2 · g1 = X1X2 · g1

we obtain the presentation matrix

Λ =

(
−Y X1

X1X2 −Y

)
.

The matrix Λ can be used to compute the Fitting ideals of f∗O2, which determined the
multiple-point schemes in the target of f . The image of f and the double points space
are, respectively:

M1(f) = V (Y 2 −X2
1X2) and M2(f) = V (X1, Y ).

4.2 Algorithm for polynomial presentation matrices

Computer algebra system such as Singular only admit polynomial inputs and out-
puts. In this section we deal with the problem of how to find presentation matrices whose
entries are polynomial. We start with the following trivial remark:

Remark 4.2. The elements αij ∈ Ã in (4.2) are fractions αij = aij/bij, for some polyno-
mials aij, bij ∈ C[X] and bij(0) 6= 0. Multiplying the ith row by the least common multiple
of the elements bij, j = 1, . . . , h, we obtain another presentation matrix, whose entries are
polynomial.

The previous remark guarantees, given a minimal collection of generators gi, the exis-
tence of a polynomial presentation matrix is of the following form:

Definition 4.3. Given g1, . . . , gh ∈ B, an MP-matrix (for gi) is a matrix

Λ =


β11 − u1Y β12 · · · β1h

β21 β22 − u2Y · · · β2h
...

...
. . .

...
βh1 βh2 · · · βhh − uhY

 ,
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with βij, uj ∈ C[X], uj(0) = 1, such that uigiY =
∑h

j=1 βi,jgj for 1 ≤ i ≤ h.

With the previous notations, let g1, . . . , gh be a minimal system of generators of B as
an Ã-module. It follows from Remark 4.2 that B admits an MP-matrix Λ for g1, . . . , gh as
a presentation matrix. The matrix is given by some polynomials βij, uj ∈ C[X], uj(0) = 1,
satisfying the conditions

φ(ujY )gj ≡
h∑
i=1

φ(βij)gi mod I, for all 1 ≤ j ≤ h.

To find the jth row of such Λ, one fixes polynomials up to some degree d:

βij =
∑
|α|≤d

ai,αX
α for i = 1, . . . , h,

uj,α = 1 +
∑

1≤|α|≤d

bαX
α,

and tries to find ai,α, bα ∈ C, such that the polynomial

Pd(x) = φ(ujY )gj −
h∑
i=1

φ(βij)gi

reduces to 0 modulo I. This is a linear system on ai,α, bα, prescribed by the vanishing of
the coefficient of each xα in the reduction of Pd modulo I. If that is not possible for the
degree d, then one increases d and starts all over again.

Due to the reduction process, and to the clearing of denominators in Remark 4.2, there
is no obvious way to estimate the degrees of the entries in an MP-matrix Λ in terms of
the degrees of fi and the generators of I. Unfortunately, the usage of reductions, and the
increasing number of parameters ai,α, bα involved, make the complexity of the procedure
explained above grow very rapidly as d increases. In order to keep the degree d as low
as possible, it seems a good idea to consider a class of matrices bigger than the set of
MP-matrices. The following example illustrates this situation.

Example 4.4. Let X = V (I) ⊆ C3, with I = 〈z − xky〉, and let f : X → C3 be given by

(x, y, z) 7→ (x, y2 + xz, z).

In our usual setting A = C[X1, X2, Y ]〈X1,X2,Y 〉, Ã = C[X1, X2]〈X1,X2〉, B =
(

C[x,y,z]
〈z−xky〉

)
〈x,y,z〉

,

φ is given by X1 7→ x,X2 7→ y2 + xz and Y 7→ z, and the pushforward module B is
minimally generated by g1 = 1 and g2 = y as an Ã-module. It is easy to check that the
matrix

Λ =

(
Y −Xk

1

−Xk
1X2 Y +X2k+1

1

)
is an MP-matrix for g1, g2. However, the matrix

Λ′ =

(
Y −Xk

1

Xk
1 (X1Y −X2) Y

)
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is also a presentation matrix (by Theorem 4.7 below). The procedure explained before
needs to consider polynomials up-to degree 2k + 1 in order to find Λ, but a more flexible
version, allowing matrices such as Λ′, will stop at degree k + 2.

Definition 4.5 ([13]). With the previous notations, given g1, . . . , gh ∈ B, an HMP-
matrix (for gi) is a matrix Λ with polynomial entries in C[X, Y ], satisfying the following
conditions:

C1.
h∑
j=1

φ(Λij)gj ≡ 0 mod I, for i = 1, . . . , h.

C2. Λij(0, Y )− Λij(0, 0) =

{
Y · ui(Y ) if i = j;
0 if i 6= j,

where u(Y ) ∈ C[Y ] satisfying u(0) 6= 0.

Remark 4.6. Every MP-matrix is an HMP-matrix. On the other hand, the HMP-
matrix Λ′ in Example 4.4 is not an MP-matrix.

Theorem 4.7. If Λ is an HMP-matrix for a minimal set of generators g1, . . . , gh of B
as an Ã-module, then Λ is a presentation matrix for B as an A-module.

Proof The proof is similar to the one for Mond-Pellikaan’s algorithm. Take the sequence
of A-modules

Ah
Λ−→ Ah

ψ−→ B −→ 0,

where ψ is determined by ei 7→ gi, and ei the ith canonical vector in Ah. Condition C1
implies Im Λ ⊆ Ker ψ, and ψ is an epimorphism, so it suffices to show that Coker Λ = B.

Let B′ = (C[x, t]/I)〈x,t〉 and let φ′ : A → B′ be given by Xi 7→ fi, i = 1, . . . , n and

Y 7→ fn+1 + t. From the fact that B is minimally generated by g1, . . . , gh as an Ã-module,
it follows that B′ is a free A-module minimally generated by g1, . . . , gh. Let η : Ah → B′

be the isomorphism given by

(a1, . . . , ah) 7→
h∑
i=1

φ′(ai)gi

and let ϕ : B′ → B′ be the morphism defined by extending

gj 7→
h∑
i=1

φ′(Λij) · gi, for j = 1, . . . , h,

A-linearly, so that the diagram

Ah

η
��

Λ // Ah

η
��

B′
ϕ
// B′

commutes. We will show that Cokerϕ = B.
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The morphism ϕ extends A-linearly the assignations gj 7→
∑h

i=1 φ
′(Λij)gi, for j =

1, . . . , h. Consider the expansion

h∑
i=1

φ′(Λij) · gi =

h∑
i=1

(Λij(f1, . . . , fn+1 + t)) · gi

=

h∑
i=1

(Λij(f1, . . . , fn+1)) · gi +

h∑
i=1

(

∞∑
k=1

1

k!

∂kΛij
∂Y k

(f1, . . . , fn+1)tk) · gi

= t

h∑
i=1

(

∞∑
k=1

1

k!
φ(
∂kΛij
∂Y k

)tk−1) · gi.

It follows that ϕ splits as the composition B′
·t−→ B′

ψ−→ B′, where the first morphism is
multiplication by t and ψ is obtained by extending gj 7→ g′j =

∑
iRijgi, with

Rij =
∞∑
k=1

1

k!
φ(
∂kΛij

∂Y k
)tk−1.

It suffices to show that ψ is an A-module isomorphism, that is, that g′1, . . . , g
′
h is a system

of generators of B′. This is equivalent to show that the collection of the classes of g′1, . . . , g
′
h

is a C-basis B′/mB′, where m is the maximal ideal in A. If a ∈ A is divisible by some
Xi, then φ(a) ∈ mB ⊂ mB′. Therefore, condition C2 implies that the classes of the
non-diagonal coefficients Rij, i 6= j, are all zero, and the classes of Rii are all non-zero.
This implies that the collection of classes of g′1, . . . , g

′
h is a basis, as desired.

Remark 4.8. It is clear that Theorem 4.7 works for holomorphic maps as well. With our
usual assumptions, if a holomorphic map f : X → Cn+1 has polynomial coordinate func-
tions and g1, . . . , gh are polynomial minimal set of generators of f̃∗OX , then any HMP-
matrix for g1, . . . , gh is a presentation matrix for f∗OX .

4.3 Implementation and applications

In this section we describe an algorithm to obtain a matrix Λ satisfying C1 and C2,
and we give some applications. An implementation of this algorithm in Singular can be
found in [31].

We recall previous assumptions and notations: We use variables X = X1, . . . , Xn and
Y , and variables x = x1, . . . , x`. We write A = C[X, Y ] and Ã = C[X]〈x〉. I is an ideal
in C[x]〈x〉, such that B = C[x]〈x〉/I is a Cohen Macaulay n-dimensional ring. We have a

morphism of rings φ : A → B, such that B is finitely generated as Ã-module. It is well
known that a minimal set of generators {g1, . . . , gh} for B as Ã-module can be obtained
as representatives of the elements of a basis of the C-vector space B/mB, where m is the
ideal maximal ideal 〈X1, . . . , Xn〉 in Ã. We assume that such a basis can be computed
by an internal procedure of the software used for implementation. We also assume the
software to be able to perform Groebner bases computations, in particular the reduction
of an ideal with respect to another one (see [10]). In Singular, this operations can be
computed by using the instructions kbase and reduce, respectively.

The outline of our algorithm is as follows:
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Inputs: f and I.
Compute a C-basis {g1, g2, . . . , gh} of B/mB.
For i = 1, . . . , h do:

Define w := 1 and k := 0;
While w 6= 0 do:
k := k + 1;
Consider vi1, . . . , vih, where

vij =
∑
|α|≤k a

α
ijX

α1
1 · · ·Xαn

n Y αn+1 is a generic polynomial

satisfying (P) (see Remark 4.9);

Compute the reduction P (aαij , x) of
∑h

j=1 φ(vij)gj modulo I;

If there exists ãαij ∈ C, such that P (ãαij , x) = 0

then λij :=
∑
|α|≤k ã

α
ijX

α and w := 0;

Output: Matrix presentation Λ = (λij).

presmatrix: Algorithm to compute an HMP-matrix.

Remark 4.9. By a generic polynomial we mean that the coefficients aαij are parameters
in the base ring. Property (P) is as follows:

• vii(0, . . . , 0, Y ) ≡ Y mod (Y 2);

• vij(0, . . . , 0, Y ) ∈ C, for all j 6= i.

By construction, condition (P) implies that Λ satisfies condition C2, and the fact
that the reduction P (ãαij, X) vanishes ensures that C1 holds. Note that the degree of
the generic polynomials vij grows with the “while” loop, and the algorithm runs over all
the matrices considered in Remark 4.2. Since we assumed that B is a finitely generated
Ã-module, the algorithm terminates.

See Subsection 5.2 for a Singular library implementation of the presmatrix algo-
rithm.

In subsections below we show some applications in singularity theory using presma-
trix. All computations showed here were done using a computer equipped with processor
Intel Core i7-4790k, 4 Ghz, 32Gb Ram memory. We use standard singularity theory
notation for which the reader can find the details in the references.

4.3.1 Topological invariants for maps from (C2, 0) to (C2, 0)

Let f : (C2, 0) −→ (C2, 0) be a corank 2 map germ given by

(x, y) 7−→ (xy, x4 + y37 + x2y23).

In this example we will calculate the following invariants of f : µ(Σ(f)) Milnor number
of critical set points, ]A2(f) number of cusps, ]A1,1(f) number of ordinary double points
and µ(∆(f)) Milnor number of discriminant curve.

> LIB "sing.lib"; //library for calc. Milnor number

> ring r=0,(x,y),ds;

> ideal f=xy,x4+y37+x2y23;
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> ideal Jf=det(jacob(f)); //jacobian ideal of f

> milnor(Jf); //Milnor number of \Sigma(f)

108

> ideal fj=f,Jf;

> fj;

fj[1]=xy

fj[2]=x4+x2y23+y37

fj[3]=-4x4+21x2y23+37y37

> matrix M=jacob(fj);

> print(M);

y, x,

4x3+2xy23, 23x2y22+37y36,

-16x3+42xy23,483x2y22+1369y36

> ideal K=minor(M,2);

> K;

K[1]=4x4-21x2y23-37y37

K[2]=-16x4-441x2y23-1369y37

K[3]=-2300x5y22-6068x3y36-1184xy59

> vdim(std(K)); //number of cusps

147

Therefore, µ(Σ(f)) = 108 and ]A2(f) = 147.

One way to find the ideal of definition of discriminant curve ∆(f) of f is elimination
of variables. In Singular using elimination of variables is as follows:

> ring R=0,(x,y,X,Y),ds;

> ideal f=xy,x4+y37+x2y23;

> ideal Jf=4x4-21x2y23-37y37; //jacobian ideal of f

> ideal I=X-f[1],Y-f[2],Jf;I;

I[1]=X-xy

I[2]=Y-x4-x2y23-y37

I[3]=4x4-21x2y23-37y37

> ideal G=eliminate(I,xy); //eliminate x and y variables of I

The defining equation of the discriminant of the germ f(x, y) = (xy, x4 + y37 + x2y23)
can not be computed due to lack of memory using the Singular.

Another way to find discriminant curve is ∆(f) = V (F0(f)). Now let us use presma-
trix to compute an HMP-matrix to calculate the ideals F0(f) and F1(f).

In our usual setting we have that X = V (I) = Σ(f) ⊂ C2, with I = Jf = 〈4x4 −
21x2y23 − 37y37〉, f : Σ(f)→ C2 be given by

(x, y) 7→ (xy, x4 + y37 + x2y23).

A = C[X, Y ]〈X,Y 〉, Ã = C[X]〈X〉, B =
(

C[x,y]
〈4x4−21x2y23−37y37〉

)
〈x,y〉

, φ is given by X 7→ xy

and Y 7→ x4 + y37 + x2y23, and the pushforward module B is minimally generated by
{1, x, x2, x3, y, y2, y3, y4, . . . , y37}, as an Ã-module.
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> LIB "presmatrix.lib"; //library to compute an HMP-matrix

> ring A=0,(X,Y),ds; //target ring

> ring B=0,(x,y),ds; //source ring

> ideal f=xy,x4+y37+x2y23; //map germ f

> map phi=A, f; //map phi:A-->B

> ideal I=det(jacob(f)); //jacobian ideal

> presmatrix(phi,I); //compute an HMP-matrix

//Generators = 1,x,x2,x3,y,y2,...,y37

// PM

//R^h------>R^h------>Ox------>0; h = 41, R = A

//too big to be written here

//To access the presentation matrix PM, type: setring RTPr; PM;

The presentation matrix Λ for f∗OΣ(f) is a 41× 41 matrix, too big to be written here.
The total time to obtain such matrix was about 165 seconds.

> setring RTPr; //ring created internally which contain HMP-matrix

> ideal F0=fitting(PM,0);F0; //0th Fitting ideal

//definition ideal of discrim. curve

F0[1]=2702114548679112554004052502014933234208613397342771057284352Y41+

89039892324525093721626342112307092499158731438269059301376X22Y36-

2292994872555072796687789319622213309134653597849217010761728X36Y32+

639932406765419504549947072231945308749434286179683926016X44Y31+

17931737754822428410210521048890361067129894577958560527810560X50Y28-

3740666573039806983724454983871496965102931414931810025472X58Y27-

99730172739938755176063173601283947701392417185271507576684544X64Y24+

370354907320581759997076135530813843235775429960794112X66Y26+

17080104791488015711177228412502678782476071500452479369216X72Y23+

493478099586438245255360790024402207031236907324546816495583232X78Y20+

27590837108875259433749823564019465758161309270016X74Y25-

2975575571453454103600692329850704011998061647794012160X80Y22-

76848234123840067977543233244391815848745875507451770437632X86Y19-

162849497439453368976371360575174408691609133322508864873539253417X92Y16-

221670409873548536182115987262408231380582400000000X88Y21+

16399210889267430428005642875153077314677447081521577984X94Y18+

364204585061675360509077570286503871816826840687888388063232X100Y15-

1277224920816754063004263363062954078522819355751989727087524504932X106Y12+

1221643642562213608830078515334139084800000000000000X102Y17-

80383687984369828740686442526472488490120972861440000000X108Y14-

5289215224077978152845916436190683152656327323417138385753473024X114Y11-

3315039040258504064376803567515788755468685594528841163752906326070X120Y8-

5987807898004519071982600952217600000000000000000000X116Y13+

386839189850724478763585128880534912034983116800000000000X122Y10+

93692857811354889210640523456144342132006672456948654461419520000X128Y7-

3530771287598964175980492383953357672449680398172513512891422696164X134Y4+
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28813870814925116978233344000000000000000000000000000X130Y9-

38002402887515726089485823467478512550412288000000000000000000X136Y6-

78102890680880098335649438018639637636089215133612328960000000000X142Y3-

1330877630632711998713399240963346255985889330161650994325137953641X148-

142671468967387851653120000000000000000000000000000000X144Y5-

83165307993926471656897501408022530048000000000000000000000000X150Y2-

21991685013753693798400000000000000000000000000000000000000X158Y-

1638400000000000000000000000000000000000000000000000000X166

> milnor(F0);

Using Singular, and ∆(f) = V (F0(f)) obtained by algorithm, also we can not obtain
µ(∆(f)) due to lack of memory. But, by [9]

µ(∆(f)) = µ(Σ(f)) + 2(]A1,1(f) + ]A2(f)).

If one can calculate the invariants ]A1,1(f) + ]A2(f), then we can obtain µ(∆(f)) as well.
By [9] and [33],

]A1,1(f) + ]A2(f) = dimC
O(C2,0)

F1(f)
.

> ideal F1=fitting(PM,1);F1; //1st Fitting ideal

F1; //too big to be written here

> vdim(std(F1));

2886

As, µ(Σ(f)) = 108 and ]A1,1(f) + ]A2(f) = dimC
O(C2,0)

F1(f)
= 2886, we have that µ(∆(f)) =

5880. In this case, by computation, as ]A2(f) = 147 follows that ]A1,1(f) = 2739.
Finally,

µ(Σ(f)) = 108, µ(∆(f)) = 5880, ]A1,1(f) = 2739, ]A2(f) = 147.

This example shows the importancy of implementation methods in CA-systems to
obtain invariants. Next another application of presmatrix algorithm to topological clas-
sification in O(2, 2).

4.3.2 Topological classification in O(2, 2)

The description of the topological orbits of map germs is a central question in Singular-
ity Theory, even to find when a K-class has a finite (or not) number of topological orbits is
in general, an open problem. Concerning complex map germs from the plane to the plane,
Gaffney and Mond in [8] described the topological orbits of semiquasihomogeneous map
germs which have a representative that is finitely determined. In the corank 2 case, there
are germs that belong to a given K-class, but are not semiquasihomogenous, in special
if the germ belongs to a K-class with a representative (xy, xa + yb) with g.c.d.(a, b) = 1.
The simplest case is the K-class (xy, x2 + y3) where the germs (xy, x2 + αxy + y3) are
not semiquasihomogeneous for any α 6= 0, but are A-equivalent to (xy, x2 + y3) and there
exists only one topological orbit, see [8, Example 5.11].
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For corank 2 map germs from C2 to C2 Gaffney and Mond in [8] ask the following
question:

How many different topological types are contained in a given K(xy, xa + yb)-orbit?

The method to answer this question is the study of the cusps and transversal double
fold points which appear in the discriminant curve of any generic deformation of the germ.
Whitney showed in [46], that any real stable map germ in these dimensions has only a finite
number of cusps and double folds as singular points of the discriminant curve, Gaffney and
Mond in [9] showed sufficient conditions for finite determinacy in terms of the finiteness
of the number of these singularities. Moreover, the constancy of them is a necessary and
sufficient condition for the topological triviality in a family, [9, Corollary 1.10].

In [29] Miranda, Saia and Soares, showed that for all pairs (a, b), excluding (2, 3) and
(2, 5), there exist a non finite number of distinct topological types in each K-orbit, that
is, for f(x, y) = (xy, αxa + βyb) there is at least one family such that each element in the
family is A-finitely determined germ and any two of them are not C0−A-equivalent. For
(a, b) = (2, 3) there is only one, and for (a, b) = (2, 5) there are two distinct topological
orbits.

In order to illustrate the use of the presmatrix algorithm we fix (a, b) = (3, 4). First
we consider the following family fp,q(x, y) = (xy, x3 + y4 + pxy2 + qx2y) and analyse its
discriminant curve ∆(fp,q(x, y)).

> LIB "presmatrix.lib"; //library to compute an HMP-matrix

> ring A=0,(p,q,X,Y),ds; //target ring

> ring B=0,(p,q,x,y),ds; //source ring

> ideal f=p,q,,xy,x3+y4+pxy2+qx2y; //map germ f

> map phi=A, f; //map phi:A-->B

> ideal I=det(jacob(f)); //jacobian ideal

I;

I[1]=-3x3-qx2y+pxy2+4y4

> presmatrix(phi,I); //compute an HMP-matrix

//Generators = 1,x,x2,y,y2,y3,y4

// PM

//R^h------>R^h------>Ox------>0; h = 7, R = R

Y, -2/3qX, 0, -4/3pX, 0, 0, -7/3,

-4/3pX2,Y, -2/3qX, 0, 0, -7/3X, 0,

1/3qXY, -2/5pX2,Y, 0, -7/3X2-8/15pY,2/5p2X, -5/3qX,

-5/4qX2,0, -7/4X, Y, -3/4pX, 0, 0,

0, -7/4X2, 0, -5/4qX2, Y, -3/4pX, 0,

-7/4X3, 0, 0, 0, -5/4qX2, Y, -3/4pX,

0, 0, -3/10pX2,-7/4X3-3/20pXY,3/10p2X2, -5/4qX2,Y

//To access the presentation matrix PM, type: setring RTPr; PM;

> setring RTPr;
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> ideal F0=fitting(PM,0);F0;

F0[1]=6912Y7-197568qX5Y4-52416pqX3Y5+1024q3X3Y5-823543X12-1411788pX10Y-

677082p2X8Y2-74284p3X6Y3+729p4X4Y4+840350q2X10Y+281260pq2X8Y2+

114254p2q2X6Y3-116375q4X8Y2-6400pq4X6Y3+345744p3qX11+155232p4qX9Y-

3888p5qX7Y2-377300p2q3X11-73080p3q3X9Y+108p4q3X7Y2-6912p7X10+

122500pq5X11+9000p2q5X9Y+3456p6q2X10-12500q7X11-432p5q4X10

Thus, the presentation matrix Λ(f) is given by



Y −2
3
qX 0 −4

3
pX 0 0 −7

3

−4
3
pX2 Y −2

3
qX 0 0 −7

3
X 0

1
3
qXY −2

5
pX2 Y 0 −7

3
X2 − 8

15
pY 2

5
p2X −5

3
qX

−5
4
qX2 0 −7

4
X Y −3

4
pX 0 0

0 −7
4
X2 0 −5

4
qX2 Y −3

4
pX 0

−7
4
X3 0 0 0 −5

4
qX2 Y −3

4
pX

0 0 − 3
10
pX2 −7

4
X3 − 3

20
pXY 3

10
p2X2 −5

4
qX2 Y


Now, the discriminant of this map is given by the 0-th Fitting ideal, and we have:

I(∆(fp,q)) = 823543X12 + (12500 q7 − 122500 pq5 + 377300 p2q3 − 345744 p3q)X11

+(1411788 p− 840350 q2)X10Y + (432 p5q4 − 3456 p6q2 + 6912 p7)X10

+(73080 p3q3 − 9000 p2q5 − 155232 p4q)X9Y + (116375 q4 − 281260 pq2

+677082 p2)X8Y 2 + (−108 p4q3 + 3888 p5q)X7Y 2 + (6400 pq4 − 114254 p2q2+
74284 p3)X6Y 3 + 197568 qX5Y 4 − 729 p4X4Y 4 + (52416 pq − 1024 q3)X3Y 5

−6912Y 7

When p = q2

4
, the discriminant curve is Newton degenerate, and µ(∆(f q2

4
,q

)) = 54, [29].

The next step is to fix values for p, q with p = q2

4
and add monomials of degree 4 in the

second entry of f . Consider the new family fp,q,u,v,w(x, y) = (xy, x3 + y4 + qx2y + pxy2 +
uxy3 + vx3y +wx4), with p = 1, q = 2. We will not show the presentation matrix and the
ideal F0 here because they are very large.

Analysing ∆(f q2
4
,q,u,v,w

), q = 2, we conclude that:

Case 1: if u 6= v − 2w + 2, then the Milnor number of discriminant is 54.

Case 2: if u = v − 2w + 2, then the family is not A−finitely determined.

We set u = 2, v = w = 0 and consider the new family

f s(x, y) = (xy, x3 + y4 + 2x2y + xy2 + 2xy3 + xsys+1)

with s > 3. Now f s is K-equivalent to (xy, x3 + y4) for all s. Using presmatrix for
various fixed values of s, we obtain the following presentation matrix for f s∗OΣ(fs):
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Y − 4
3
X 0 16

9
δ − 10

3
X 0 − 7

3

16
9
Xδ Y − 4

3
X − 10

3
X2 0 − 7

3
X 0

− 10
3
X3 − 37

30
XY − 4

3
Xs+1 + 6

5
X2 Y − 8

5
Xδ 0 0 11

10
X

− 5
2
X2 0 − 7

4
X Y δ −X 0

0 − 7
4
X2 0 − 5

2
X2 Y δ −X

− 37
12
X3 0 − 4

3
X2 1

3
XY − 5

2
X2 Y + 2

3
X2 δ

15
8
X3 + 27

160
XY β X2( 21

16
−Xs−1) α X

(
9
16
Xs + Y

)
0 Y − 63

160
X



where α = −1
2
XY − 9

4
X3 − 9

40
X2 − 1

40
Xs (9X − 10Y ), β = −5

2
X3 − 9

40
X2 − 3

4
XY and

δ = −3
4
Xs − 3

4
X.

Computing the Fitting ideals we obtain the following topological invariants:

µ(∆(f s)) = 2s+ 50, d(f s) = s+ 14, µ(Σ(f s)) = 4 and c(f s) = 9.

Therefore, for each s we have a distinct topological type.

4.3.3 Target multiple points, (C3, 0)→ (C3, 0)

Consider the corank 2 quasihomogeneous map germ f : (C3, 0) −→ (C3, 0), given by

(x, y, z) 7−→ (x, yz, z6 + y2 + xz),

with weights (5, 3, 1). The objective here is calculate the r-stable types of f in the target
and compute the total number of isolated singularities.

> LIB "presmatrix.lib"; //library to compute an HMP-matrix

> ring A=0,(X,Y,Z),ds; //target ring

> ring B=0,(x,y,z),ds; //source ring

> ideal f=x,yz,z6+y2+xz; //map germ f

> map phi=A, f; //map phi:A-->B

> ideal I=det(jacob(f)); //jacobian ideal

I;

I[1]=-2y2+xz+6z6

> presmatrix(phi,I); //compute a HMP-matrix

//Generators = 1,y,z,z2,z3,z4,z5,z6

// PM

//R^h------>R^h------>Ox------>0; h = 8, R = A

Z, 0, -3/2X, 0, 0, 0, 0, -4,

-3/2XY,Z, 0, 0, 0, 0, -4Y, 0,

0, -4/3Y,Z, -5/6X, 0, 0, 0, 0,

-4/3Y2,0, 0, Z, -5/6X, 0, 0, 0,

0, 0, -4/3Y2, 0, Z, -5/6X, 0, 0,

0, 0, 0, -4/3Y2,0, Z, -5/6X,0,

0, 0, 0, 0, -4/3Y2,0, Z, -5/6X,

0, 0, -5/24XZ,5/16X2,0, -4/3Y2,0, Z
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//To access the presentation matrix PM, type: setring RTPr; PM;

> setring RTPr;

> ideal F0=fitting(PM,0);F0;

F0[1]=186624Z8+12500X6Z3-1907712X2Y2Z5-84375X8Y2+4224000X4Y4Z2-3538944Y6Z4-

19660800X2Y8Z+16777216Y12

ideal F1=fitting(PM,1);F1;

F1[1]=20736Z6+3125X6Z-23040X2Y2Z3-32000X4Y4-196608Y6Z2

F1[2]=3125X5Z2+131328XY2Z4-179200X3Y4Z+327680XY8

F1[3]=625X4Z3+6912Y2Z5-1875X6Y2+23040X2Y4Z2-65536Y8Z

F1[4]=375X3Z4-1750X5Y2Z+18432XY4Z3+6400X3Y6

F1[5]=675X2Z5-3775X4Y2Z2+6912Y4Z4+47360X2Y6Z-65536Y10

F1[6]=96768XYZ5+9375X7Y-294400X3Y3Z2+655360XY7Z

F1[7]=15625X7Z+560640X3Y2Z3-448000X5Y4-4718592XY6Z2

F1[8]=234375X8Y+6169600X4Y3Z2-24772608Y5Z4-153354240X2Y7Z+234881024Y11

ideal F2=fitting(PM,2);F2;

F2[1]=625X4Z+6912Y2Z3-6400X2Y4

F2[2]=25X3Z2+256XY4Z

F2[3]=25X2Z3+256Y4Z2

F2[4]=3XZ4+5X3Y2Z

F2[5]=27YZ4-50X2Y3Z

F2[6]=20736Z5+3125X6-57600X2Y2Z2

F2[7]=125X6-768X2Y2Z2

F2[8]=125X5Y-768XY3Z2

F2[9]=125X4Y2-768Y4Z2

F2[10]=35X3Y2Z-128XY6

F2[11]=X2Y2Z2

F2[12]=XY2Z3

F2[13]=42Y3Z3-25X2Y5

F2[14]=X3Y4

F2[15]=X2Y4Z

F2[16]=XY5Z

F2[17]=Y6Z

F2[18]=XY4Z2

F2[19]=Y5Z2

F2[20]=X2Y6

F2[21]=XY7

F2[22]=Y8

> vdim(std(F2));

62

Theorem 4.10 ([17], Proposition 4.6). Let f : (Cn+3, 0)→ (C3, 0) be a finitely determined
map germ with (Σ(f), 0) Gorenstein such that the codimension of V (F2(f)) equals to 3,
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then

dimC
O3

F2(f)
= ]A(1,2) + ]A(1,1,1) + ]A3.

Here Σ(f) is Gorenstein, since it is a hypersurface. As the Fitting ideals do not
distinguish ordinary k-multiple points from the other points whose multiplicity is k,
V (F2(f)) = A(1,2) ∪ A(1,1,1) ∪ A3. As vdim(std(F2)) = 62,

dimC
O3

F2(f)
= ]A(1,2) + ]A(1,1,1) + ]A3 = 62.

Theorem 4.11 ([17], Proposition 4.9). With the same hypothesis as Theorem 4.10 we
have,

]A(1,1,1) = dimC
O3

(I(A1,1)2 : F0(f))
.

The notation (I : J) means the quotient ideal of an ideal I by another ideal J in a ring
A or

(I : J) := {a ∈ A ; aJ ⊂ I}.
We have that V (F1(f)) = A2(f) ∪ A1,1(f), thus to calculate the number of ordinary

triple points A(1,1,1), first we need to obtain the ideal I(A1,1(f)).

> ring r=0,(x,y,z),ds;

> ideal f=x,yz,z6+y2+xz; ideal jf=det(jacob(f)); ideal fj=f,jf;

> matrix N=jacob(fj);

> ideal K=std(minor(N,3));K;

K[1]=xy+16yz5

K[2]=4y2+xz+36z6

K[3]=xz+16z6

Using iterated jacobian ideals, we obtain the ideal K that defines points of type A2

in the source of f . Now by eliminate command we can obtain the ideal I(A2(f)) in the
target.

> ring R=0,(x,y,z,X,Y,Z),ds;

> ideal K=imap(r,K); ideal f=imap(r,f);

> ideal c=X-f[1],Y-f[2],Z-f[3], K;

> ideal A2=eliminate(c,xyz);A2;

A2[1]=5X2Z+1024Y4

A2[2]=4Z3-25X2Y2

A2[3]=125X4Y+4096Y3Z2

Obtaining I(A1,1):
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> setring RTPr;

> ideal A2=imap(R,A2);A2;

A2[1]=5X2Z+1024Y4

A2[2]=4Z3-25X2Y2

A2[3]=125X4Y+4096Y3Z2

> ideal A11=quotient(F1,A2); A11;

A11[1]=135XZ4-130X3Y2Z+256XY6

A11[2]=13824Z5-3125X6+53760X2Y2Z2-131072Y6Z

A11[3]=3125X5Z-41472XY2Z3-12800X3Y4

A11[4]=3125X4Z2-6912Y2Z4-46080X2Y4Z+65536Y8

A11[5]=250X3Z3-125X5Y2-1536XY4Z2

A11[6]=15625X7-335360X3Y2Z2+786432XY6Z

> ideal A111=quotient(A11*A11,F0);A111;

A111[1]=X3

A111[2]=X2Z

A111[3]=Y2Z

A111[4]=XZ2

A111[5]=54Z3-25X2Y2

A111[6]=X2Y2

A111[7]=Y4

> vdim(std(A111));

16

Therefore, by Theorem 4.11 and vdim(std(A111)) = 16,

]A(1,1,1) = dimC
O3

(I(A1,1)2 : F0(f))
= 16.

Then, ]A(1,2) + ]A3 = 62− 16 = 46.
For the quasihomogeneous case, using topological approach, [Ohmoto, [36]], presents

formulae to compute these 0-stable singularities from (C3, 0) to (C3, 0). By Torus´s for-
mulas, we obtain

]A3 = 10; ]A1,1,1 = 16; ]A1,2 = 36,

which can be confirmed directly using the previous presentation matrix.

Remark 4.12. We can do primary decomposition of ideal F1(f),

> list L=primdecSY(F1);

> L;

[1]:

[1]:

_[1]=135Z4-130X2Y2Z+256Y6

_[2]=-3125X4Z+41472Y2Z3+12800X2Y4
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_[3]=-250X2Z3+125X4Y2+1536Y4Z2

_[4]=-82944Z5+3125X6+12800X2Y2Z2

[2]:...............................................................

_[1]=135Z4-130X2Y2Z+256Y6 .

_[2]=-3125X4Z+41472Y2Z3+12800X2Y4 .

_[3]=-250X2Z3+125X4Y2+1536Y4Z2 .

_[4]=-82944Z5+3125X6+12800X2Y2Z2 .

[2]: .

[1]: .

_[1]=5X2Z+1024Y4 .

_[2]=-4Z3+25X2Y2 .

_[3]=125X4+4096Y2Z2 A11

[2]:.............................................. .

_[1]=5X2Z+1024Y4 . .

_[2]=-4Z3+25X2Y2 . .

_[3]=125X4+4096Y2Z2 . .

[3]: . .

[1]: . .

_[1]=X . .

_[2]=-27Z4+256Y6 . .

[2]:...............................................................

_[1]=X .

_[2]=-27Z4+256Y6 .

[4]: A2

[1]: .

_[1]=Z .

_[2]=Y .

[2]:..............................................

_[1]=Z

_[2]=Y

Note that the components L[1][2] and L[3][2] define I(A1,1(f)), L[2][2] and L[4][2]

define I(A2(f)).

> primdecSY(A2);

[1]:

[1]:

_[1]=Z

_[2]=Y

[2]:

_[1]=Z

_[2]=Y

[2]:

[1]:

_[1]=5X2Z+1024Y4

_[2]=-4Z3+25X2Y2
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_[3]=125X4+4096Y2Z2

[2]:

_[1]=5X2Z+1024Y4

_[2]=-4Z3+25X2Y2

_[3]=125X4+4096Y2Z2

> primdecSY(A11);

[1]:

[1]:

_[1]=X

_[2]=-27Z4+256Y6

[2]:

_[1]=X

_[2]=-27Z4+256Y6

[2]:

[1]:

_[1]=135Z4-130X2Y2Z+256Y6

_[2]=-3125X4Z+41472Y2Z3+12800X2Y4

_[3]=-250X2Z3+125X4Y2+1536Y4Z2

_[4]=-82944Z5+3125X6+12800X2Y2Z2

[2]:

_[1]=135Z4-130X2Y2Z+256Y6

_[2]=-3125X4Z+41472Y2Z3+12800X2Y4

_[3]=-250X2Z3+125X4Y2+1536Y4Z2

_[4]=-82944Z5+3125X6+12800X2Y2Z2

4.3.4 Multiple points, (C2, 0)→ (C3, 0)

Let f : (Cn, 0) → (Cn+1, 0) be a germ of a finite and generically-one-to-one map.
Following [32], the (lifted) double points space of f is the space D2(f) given by the ideal

I2(f) = (f × f)∗In+1 +R(α),

where In+1 is the ideal defining the diagonal of Cn+1 × Cn+1, and R(α) is given by the
minors of any matrix α, whose entries αij ∈ O2n satisfy

fj(x)− fj(x′) =
n∑
i=1

αij(x, x
′)(x− x′),

for all 1 ≤ j ≤ n+1. In [19] it is shown that D2(f) is a Cohen-Macaulay space of dimension
n−1 (an extension of this result for map germs from (Cn, 0) to (Cp, 0), with n ≤ p, can be
found in [34]). Set theoretically, D2(f) is given by the pairs (x, x′) ∈ Cn × Cn, such that
f(x) = f(x′) and, if x = x′, then f is singular at x. In [24] the source double points space
D(f) ⊂ Cn is defined as the image of D2(f) by the projection on the first component
π : (Cn × Cn, 0)→ (Cn, 0), that is:

D(f) = V (F0(π|D2(f))).
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The set D(f) plays an important role. For instance, for map germs from C2 to C3,
it characterizes finite determinancy. More precisely: a map germ f : (C2, 0) → (C3, 0) is
finitely A-determined if and only if the Milnor number µ(D(f)) is finite [24, 25].

Computing D(f) for a map germ from (Cn, 0) to (Cp, 0) can be quite involved but,
in the case p = n + 1, since π : D2(f) → Cn is a map from a Cohen-Macaulay space of
dimension n− 1 to Cn, we can use presmatrix algorithm to do so.

A simple but important application of this algorithm is to compute the multiple spaces
in the target Mk(f) of a finite map germ f : (Cn, 0) → (Cn+1, 0). As mentioned before,
Mk(f) is the zero set of the ideal Fk−1(f) in On+1.

Example 4.13. Let f : (C2, 0)→ (C3, 0) be a corank 2 map germ given by

(x, y) 7→ (x2, y2, x3 + y3 + xy).

> ring A=0,(X1,X2,Y),ds; //target ring

> ring B=0,(x,y),ds; //source ring

> ideal f=x2,y2,x3+y3+xy; //map germ f

> map phi=A, f; ideal I=0; //If f: X=C^n-->C^{n+1}, set I=0 (zero ideal)

> presmatrix(phi,I); //compute a HMP-matrix

//Generators = 1,x,y,xy

// PM

//R^h------>R^h------>Ox------>0; h = 4, R = A

Y, -X1, -X2, -1,

-X1^2, Y, -X1, -X2,

-X2^2, -X2, Y, -X1,

-X1*X2,-X2^2,-X1^2,Y

//To access the presentation matrix PM, type: setring RTPr; PM;

Thus, the implementation yields the following presentation matrix of f∗O2:

Λf =


Y −X1 −X2 −1
−X2

1 Y −X1 −X2

−X2
2 −X2 Y −X1

−X1X2 −X2
2 −X2

1 Y


and we obtain the following Fitting ideals (see Figure 17):

F0(f) = 〈X2
1X

2
2 −2X1X2Y

2 +Y 4−2X4
1X2−2X1X

4
2 −8X2

1X
2
2Y −2X3

1Y
2−2X3

2Y
2 +

X6
1 − 2X3

1X
3
2 +X6

2 〉, whose zeros define the image of f .

F1(f) = 〈X2
2 +X1Y, Y +X1X2,−X2 +X2

1 〉∩ 〈X1 +X2−Y,X2
2 −X2Y +Y 2〉∩ 〈X2 +

Y,X1 +Y 〉∩ 〈−X1 +X2
2 , Y +X1X2, X

2
1 +X2Y 〉. This ideal defines the double points

space of f in the target.
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F2(f) = 〈X1, X2, Y 〉, which defines the triple points in the image of f , and this
indicates that f has exactly one ordinary triple point collapsed in the origin in the
target.

The set of double points D2(f) is given by the ideal

I2(f) = 〈(x + u)(y + v), (x + u)(2y2 + 2yv + 2v2 + x + u), (2x2 + 2xu + 2u2 + y + v)(y +
v), x2 − u2, y2 − v2, x3 + y3 + xy − u3 − v3 − uv〉.

Take the projection π : (C2 × C2, 0) −→ (C2, 0) given by π(x, y, u, v) = (x, y). A

basis of the vector space
OD2(f)

π∗m
is given by {1, y, u, v, v2, v3}. By presmatrix, we find the

following presentation matrix for π∗OD2(f):

> ring A=0,(x,y),ds; //target ring

> ring B=0,(x,y,u,v),ds; //source ring

> ideal pi= x,y; //projection map germ pi(x,y,u,v)=(x,y)

> map phi=A, pi;

> ideal I=(x+u)(y+v),(x+u)(2y2+2yv+2v2+x+u),(2x2+2xu+2u2+y+v)(y+v),

x2-u2,y2-v2,x3+y3+xy-u3-v3-uv //I=I(D^2(f))

> presmatrix(phi,I); //compute a HMP-matrix

//Generators = 1,y,u,v,v2,v3

// PM

//R^h------>R^h------>Ox------>0; h = 6, R = A

y, -1, 0, 0, 0, 0,

0, y, 0, 0, -1, 0,

0, 2x, y-2x2-xy2, x-x2y, -2x2, -2,

0, x2, 0, y+x2, 1, 0,

0, 0, 0, x2y, y+x2, 1,

1/2x2,-1/2x3,1/2x+1/2x2y,-1/2xy,-1/2x+1/2x2y,y+1/2x2

//To access the presentation matrix PM, type: setring RTPr; PM;

> setring RTPr;

> ideal F1=fitting(PM,1);F1;

F1[1]=x2

F1[2]=xy

F1[3]=y2

> vdim(std(F1));

3

Λπ =


Y −1 0 0 0 0
0 Y 0 0 −1 0

2XY +X3 0 Y −X2 X −X2Y −X2 −2
0 X2 0 Y +X2 1 0
0 X2Y 0 X2Y Y 1

1
2 X

2 − 1
2 X

3 1
2 X + 1

2 X
2Y − 1

2 XY − 1
2 X + 1

2 X
2Y Y + 1

2 X
2
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F0(f)

1

F1(f)

1

F2(f)

1

F0(π|D2(f))

1

F1(π|D2(f))

1

D2(f)

1

C2

1

C2

1

C2

1

→

1

→

1

f

1

π|D2(f)

1

Figure 17: Lifted double points, double points and multiple points in the target.

Note that target of π is the source of f , and then we obtain the following (Figure 17):

1. The ideal F0(π|D2(f)) = 〈(x2 − xy + y2)(x + y)(x + y2)(y + x2)〉, which defines the
source double points space D(f).

2. The ideal F1(π|D2(f)) = 〈x2, xy, y2〉. We may regard the double points of πD2(f) as
triple points of f . The codimension of F1(π|D2(f)) is 3, corresponding to the number
of source points in an ordinary triple point, which here have collapsed at 0.

Remark 4.14. We can give two different analytic structures defining the kth source
multiple point space of a map germ f : (Cn, 0) → (Cp, 0). In the first one, we regard
the kth source multiple point space as π(Dk(f)), where Dk(f) ⊆ (Cn)k is the lifted
kth multiple point space, and π is the projection on the first copy of Cn. Thus, the
defining ideal is F0(πDk(f)). The second structure is given by defining the source multiple
points as the preimage by f of Mk(f). It is an open problem to decide whether or not
these analytic structures coincide. In the previous example, we computed F0(π|D2(f)) =
〈(x3+y3)(x+y2)(y+x2)〉, which is precisely the preimage by f of the ideal F1(f) computed
in Example 4.13.

> ring A=0,(X1,X2,Y),ds; //target ring

> ring B=0,(x,y),ds; //source ring

> ideal f=x2,y2,x3+y3+xy; //map germ f

> map phi=A, f; ideal I=0; //If f: X=C^n-->C^{n+1}, set I=0 (zero ideal)

> presmatrix(phi,I); //compute a HMP-matrix

//Generators = 1,x,y,xy

// PM

//R^h------>R^h------>Ox------>0; h = 4, R = A

Y, -X1, -X2, -1,

-X1^2, Y, -X1, -X2,

-X2^2, -X2, Y, -X1,

-X1*X2,-X2^2,-X1^2,Y

//To access the presentation matrix PM, type: setring RTPr; PM;
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> setring RTPr;

> ideal F1=fitting(PM,1);F1;

F1[1]=X1*X2-Y^2-X1^3-X2^3-2*X1*X2*Y

F1[2]=X1^2*Y+X2*Y^2+X1^3*X2+X1*X2^2*Y

F1[3]=X2^2*Y+X1*Y^2+X1*X2^3+X1^2*X2*Y

> setring B;

> map G=RTPr,f;

> ideal Df=G(F1);Df; //pre-image of F1 by f

Df[1]=-2x4y-2xy4-2x6-4x3y3-2y6-2x5y2-2x2y5

Df[2]=x5y+x2y4+x7+3x4y3+2xy6+2x6y2+3x3y5+y8+x5y4+x2y7

Df[3]=x4y2+xy5+2x6y+3x3y4+y7+x8+3x5y3+2x2y6+x7y2+x4y5

> Df=std(Df);Df;

Df[1]=x4y+xy4+x6+2x3y3+y6+x5y2+x2y5 //pre-image of F1 by f

> factorize(Df[1]);

[1]:

_[1]=1

_[2]=x2-xy+y2

_[3]=x+y

_[4]=y+x2

_[5]=x+y2

[2]:

1,1,1,1,1 //each factor with power 1

Therefore in this exampe, D(f) = V (F0(πDk(f))) = f−1(F1(f)).

4.4 Fast implementation for a presentation of corank 1 map
germs in O(n, n)

For any corank 1 finite map germ f inO(n, n), the set (Σ(f), 0) is an (n−1)-dimensional
Cohen-Macaulay variety, therefore we can use the procedure of Mond-Pellikaan to compute
its presentation. Here we show explicitly this construction.

Let f ∈ O(n, n) be a finite map germ of corank 1. Choosing linearly adapted coor-
dinates one can write f(x, z) = (x1, . . . , xn−1, g(x, z)), where x = (x1, . . . , xn−1) ∈ Cn−1,
z ∈ C and g : (Cn, 0) → (C, 0) is a polynomial that can be written in the form g(x, z) =
zk+1 +h(x, z), with h(x, z) = hk−1(x)zk−1 +hk−2(x)zk−2 + · · ·h1(x)z+h0(x) and hi(0) = 0
hi : (Cn, 0)→ (C, 0), i = 0, . . . , k − 1.

To describe the presentation matrix explicitly we remember that the Jacobian determi-
nant of the matrix of the derivatives of f at any point (x, z) is J(f) = (k+ 1)zk +hz(x, z),
where hz(x, z) denotes the derivative of h(x, z) with respect to the variable z.

For such f it follows that the local algebra
O(Σ(f),0)

f∗mCn,0
is isomorphic to C[z]

〈zk〉 , or in other

words, O(Σ(f),0) is minimally generated as On-module (target) via f |∗(Σ(f),0) and in this case

a system of generators {g0, g1, . . . , gk−1} is given by {1, z, z2, . . . , zk−1}. The main difficulty
to obtain the matrix λ as in (4.3) is to find k relations among the target variables Xi = fi,
i = {1, . . . , n} and the set of generators {1, z, z2, . . . , zk−1}, module the jacobian ideal
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J(f). These relations are shown below. As f is of corank 1, we preserve the name of
variable xi, i = {1, . . . , n} in the source and in the target.

For the first relation, one has

g(x, z) ·1 = zk+1 +hk−1(x1, . . . , xn−1) · zk−1 + · · ·+h1(x1, . . . , xn−1) · z+h0(x1, . . . , xn−1) ·1

Let Y := g(x, z) , then

Y · 1 = zk+1 + hk−1(x) · zk−1 + · · ·+ h1(x) · z + h0(x) · 1

zk+1 = (Y − h0(x)) · 1− h1(x) · z − · · · − hk−1(x) · zk−1 (4.4)

On the other hand, (k + 1) · zk + hz(x, z) = 0 (in O(Σ(f),0)). Then

(k + 1) · zk = −(k − 1)hk−1(x) · zk−2 − · · · − 2h2(x) · z − h1(x) · 1

zk = −
(
k − 1

k + 1

)
hk−1(x) · zk−2 − · · · −

(
2

k + 1

)
h2(x) · z −

(
1

k + 1

)
h1(x) · 1 (4.5)

From equality (4.4) and equality (4.5) multiplied by z, results

(Y − h0(x)) ·1−
(

k

k + 1

)
h1(x) · z−

(
k − 1

k + 1

)
h2(x).z2−· · ·−

(
2

k + 1

)
hk−1(x) · zk−1 = 0 (4.6)

Now, denote H1,1(x) = −h0(x), H1,j+1(x) = −
(
k+1−j
k+1

)
hj(x), j = 1, . . . , k − 1 and

equation (4.6) shows that

(Y +H1,1(x)) · g0 +
k−1∑
i=1

H1,i+1(x)gi = 0. (4.7)

Therefore the first line of the matrix λ is[
Y +H1,1(x) H1,2(x) · · · H1,k(x)

]
1×k .

To obtain the second line of the matrix λ, we multiply the equation (4.7) by g1 := z,
then

Y · g1 +H1,1(x) · g1 +
k−1∑
i=1

H1,i+1(x)gi · g1 = 0.

As gi · gj = gi+j, i+ j < k,

Y · g1 +H1,1(x) · g1 +H1,2(x) · g2 + · · ·+H1,k−1(x) · gk−1 +H1,k(x) · zk = 0. (4.8)

Substituting the right hand of the equation (4.5) in the equation (4.8), regrouping and
renaming the terms

H2,1(x) · g0 + Y · g1 +H2,2(x) · g1 +H2,3(x) · g2 + · · ·+H2,k−1(x) · gk−2 +H2,k(x) · gk−1 = 0.
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And the second line of the matrix is given by[
H2,1(x) Y +H2,2(x) · · · H2,k(x)

]
1×k ·

Observe that the equation (4.5) does not depend of the variable Y .
Proceeding in this way, to obtain the rth line multiply the (r − 1)th line by z or the

first line by zr−1 and use the equations (4.4) and (4.5). The process is algorithmic and
finishes after k lines, where k is the number of generators. To conclude, by [Mond and
Pellikaan, [33]] , the relations among the gi obtained above generate the module Ker ψ in
4.3.

Therefore for any finitely determined map germ f : (Cn, 0) → (Cn, 0), f(x, z) =
(x1, . . . , xn−1, g(x, z)), with g(x, z) = zk+1 +hk−1(x)zk−1 +hk−2(x)zk−2 + · · ·h1(x)z+h0(x)
and hi(0) = 0, hi : (Cn, 0)→ (C, 0), i = 0, . . . , k − 1, we have the theorem:

Theorem 4.15 (Theorem 3.1, [30]). The presentation matrix of O(Σ(f),0) over On is given
by:

λ =



Y +H1,1(x) H1,2(x) · · · H1,k(x)
H2,1(x) Y +H2,2(x) H2,k(x)

...
. . .

...

Hk,1(x) · · · Y +Hk,k(x)


k×k

where, Hi,j : (Cn−1, 0)→ (C, 0) are the polynomials construct above and (x1, . . . , xn−1, Y )
denote the target variables.

Remark 4.16. From the results of Mond-Pellikaan we can say that the elements of this
matrix λ are in the ring On, but in this case the entries are polynomials and the deter-
minant of the matrix λ is of the form Y k + B, where B is a polynomial in the variables
x1, . . . , xn−1, Y , with B(0, . . . 0, Y ) = 0.

We implemented this procedure to obtain the matrix of Theorem 4.15, called presco-
rank1. A library Singular of prescorank1, can be downloaded in [Miranda, [28]] or
see Subsection 5.3 for a source code. We remark that, with f in its pre-normal form, was
possible to obtain a presentation without use Groebner bases.

Remark 4.17. prescorank1 works correctly if f is in pre-normal form. For map germs
of corank 1 without being in the pre-normal form, use the more general algorithm pres-
matrix.

Next some applications by using prescorank1.

4.4.1 Equation of the discriminant

Using prescorank1 we can compute the defining equation of the discriminant in
several cases that the classical method called ”Elimination of Variables” does not finishes
because of lack of memory.
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For instance, consider the map germ f from C4 to C4 given by

f(x, y, z, w) = (x, y, z, w43 + z13w3 + y8w + x3w8).

The objective is to obtain the ideal I(∆(f)). The first method is by Fitting ideal, be-
cause F0(f) = I(∆(f)). Using prescorank1, the total time to find a 42 × 42-matrix
λf presentation matrix and to compute its F0(f) Fitting ideal was less than 1 second.
The second method is by elimination of variables, see Example 2.7. Using the command
eliminate({W-(f[4]),diff(f[4],w)},{w}) in Maple, where F[4]=w43 + z13w3 + y8w+
x3w8, the total time spent was 970.26 seconds, and in Singular it was not possible to
obtain this ideal because lack of memory. We do not show here this F0(f) Fitting ideal
because its defining equation is very huge.

4.4.2 r-stable types of f(x, y, z) = (x, y, z6 + yz + xz2)

The determinacy of numerical invariants associated to map germs is a powerful tool
in the study of problems of its singularities, in general these invariants appear as schemes
associated to the discriminant of stable maps, called stable singularities.

For the particular singularities which are isolated, called 0-stable singularities, the type
and also the number of such singularities is very relevant because they hide information
about the local geometric behavior of such maps, as we can see in [9], [32], [15], [18]. In
general the computation of the 0-stable singularities is not easy, but when the germ is
quasihomogeneous, there are several works that show how to compute such numbers in
terms of the weights and degrees of quasi homogeneity, se for instance [8], [23], [6], [41].

In the examples λf denotes the presentation matrix with respect to O(Σ(f),0).

It is of great interest in Singularity Theory to describe the multiple points spaces (in
the target) of any germ fv given in a deformation of the germ f . We show here how to
use this algorithm for the particular case that the deformation is given by fv(x, y, z) =
(x, y, z6 + yz + xz2 + vz4), the same germ consired in section 3.5, with parameter u = 0.

This deformation results in beautiful picture for v < 0.

Simply we consider the one parameter unfolding F of f , F : (C×C3, 0)→ (C×C3, 0)
written as

F (v, x, y, z) = (v, x, y, z6 + yz + xz2 + vz4)

See how to obtain the matrix of a presentation for this map.

LIB "prescorank1.lib"; \\library to obtain the presentation matrix

> ring r=0,(v,x,y,z),ds; \\define the ring

> ideal F=v,x,y,z6+yz+xz2+vz4; \\define the map germ

> F;

F[1]=v

F[2]=x

F[3]=y

F[4]=yz+xz2+vz4+z6
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> prescorank1(F);

// PM

//R^h------>R^h------>Ox------>0;

//h = 5, R = Local target ring with variables:(v,x,y,Y).

Y, -5/6y, -2/3x, 0, -1/3v,

1/18vy, Y+1/9vx, -5/6y, -2/3x+2/9v2, 0,

0, 1/18vy, Y+1/9vx, -5/6y, -2/3x+2/9v2,

1/9xy-1/27v2y,2/9x2-2/27v2x, 1/18vy, Y+5/9vx-4/27v3,-5/6y,

5/36y2, 7/18xy-1/27v2y,2/9x2-2/27v2x,11/18vy, Y+5/9vx-4/27v3

//TOTAL TIME = 0 sec

//To access the presentation matrix PM, type: setring RT; PM;

setring RT;

ideal F0=fitting(PM,0); ideal F1=fitting(PM,1); ideal F2=fitting(PM,2);

> F0;

F0[1]=46656Y5+3125y6+22500xy4Y+43200x2y2Y2+13824x3Y3+32400vy2Y3+62208vxY4+

256x5y2+2000vx2y4+1024x6Y+10560vx3y2Y-1500v2y4Y+9216vx4Y2-

6480v2xy2Y2+17280v2x2Y3-13824v3Y4-128v2x4y2-900v3xy4-512v2x5Y-

4816v3x2y2Y-4352v3x3Y2-192v4y2Y2-9216v4xY3+16v4x3y2+108v5y4+64v4x4Y+

576v5xy2Y+512v5x2Y2+1024v6Y3

> F1;

F1[1]=1875y4+5400xy2Y+1728x2Y2+1296vY3+256x5+1440vx2y2+1344vx3Y-1080v2y2Y+

432v2xY2-128v2x4-616v3xy2-592v3x2Y-192v4Y2+16v4x3+72v5y2+64v5xY

F1[2]=1125y3Y+2160xyY2-64x4y-100vxy3+576vx2yY-756v2yY2+32v2x3y+15v3y3-

344v3xyY-4v4x2y+48v5yY

F1[3]=2700y2Y2+2592xY3+160x3y2+125vy4+384x4Y+180vxy2Y+1728vx2Y2-864v2Y3-

88v2x2y2-224v2x3Y+44v3y2Y-960v3xY2+12v4xy2+32v4x2Y+128v5Y2

F1[4]=1620yY3-100x2y3-336x3yY+150vy3Y+216vxyY2+65v2xy3+228v2x2yY+48v3yY2-

9v4y3-32v4xyY

F1[5]=3888Y4+250xy4+1080x2y2Y+576x3Y2+540vy2Y2+3024vxY3+16vx3y2-75v2y4+

64vx4Y-216v2xy2Y+144v2x2Y2-576v3Y3-4v3x2y2-16v3x3Y-24v4y2Y-64v4xY2

> F2;

F2[1]=96x3+75vy2+72vxY-56v2x2-24v3Y+8v4x

F2[2]=60x2y-45vyY-43v2xy+6v4y

F2[3]=75xy2+54vY2+8vx3-25v2y2+36v2xY-2v3x2-8v4Y

F2[4]=375y3+360xyY+80vx2y+12v2yY-12v3xy

F2[5]=144x2Y+5v2y2-96v2xY+16v4Y

F2[6]=90xyY-4vx2y-33v2yY+v3xy

F2[7]=225y2Y-20vxy2+3v3y2

F2[8]=216xY2+32x4+135vxy2+144vx2Y-8v2x3-33v3y2-32v3xY

F2[9]=540yY2+25vy3+36vxyY+8v3yY

F2[10]=324Y3+20x2y2+48x3Y+15vy2Y+216vxY2-5v2xy2-12v2x2Y-48v3Y2
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Using the command “prescorank1(F)” we obtain directly the 5 × 5 matrix λF for the
presentation

O5
3

λF−→ O5
3

α−→ O(Σ(F ),0) → 0.

Where λF is given by


Y −5

6y −2
3x 0 −1

3v
1
18vy Y + 1

9vx −5
6y −2

3x+ 2
9v

2 0
0 1

18vy Y + 1
9vx −5

6y −2
3x+ 2

9v
2

1
9xy − 1

27v
2y 2

9x
2 − 2

27v
2x 1

18vy Y + 5
9vx− 4

27v
3 −5

6y
5
36y

2 7
18xy − 1

27v
2y 2

9x
2 − 2

27v
2x 11

18vy Y + 5
9vx− 4

27v
3



We remark that the time of execution to obtain this matrix was insignificant.
With primary decomposition of these ideals and using for example the Maple to gen-

erate the pictures and Cinema 4D or 3DS studio software to model beautiful pictures, we
can visualize the multiple points set in the target in real time moving the parameter v.
The Figure 18 shows the discriminant and the other stable types of fv for a fixed real value
v < 0.

∆(fv) = V (46656Y 5 + 3125y6 + 22500xy4Y + 43200x2y2Y 2 + 13824x3Y 3+
32400vy2Y 3 + 62208vxY 4 + 256x5y2 + 2000vx2y4 + 1024x6Y+
10560vx3y2Y − 1500v2y4Y + 9216vx4Y 2 − 6480v2xy2Y 2+
17280v2x2Y 3 − 13824v3Y 4 − 128v2x4y2 − 900v3xy4−
512v2x5Y − 4816v3x2y2Y − 4352v3x3Y 2 − 192v4y2Y 2−
9216v4xY 3 + 16v4x3y2 + 108v5y4 + 64v4x4Y + 576v5xy2Y+
512v5x2Y 2 + 1024v6Y 3).

A2(fv) = V (375y2 + 1440xY + 32vx2 − 384v2Y,
15525Y 2 + 460x3 − 750vy2 − 9090vxY − 271v2x2 + 3252v3Y ).

A1,1(fv) = V (y,−27Y 2 − 4x3 − 18vxY + v2x2 + 4v3Y )∪
V (−25xy2 − 36x2Y − 108vY 2 + 5v2y2 − 12v2xY + 4v4Y,
−40y2Y 2 − 144xY 3 + 4x3y2 + 25vy4 + 16x4Y + 132vxy2Y + 112vx2Y 2+
240v2Y 3, 125y4 + 680xy2Y + 720x2Y 2 + 1296vY 3 + 4vx2y2 + 16vx3Y−
8v2y2Y − 48v2xY 2, 108Y 3 − 5x2y2 − 20x3Y − 5vy2Y + v2xy2+
4v2x2Y − 4v3Y 2,−25y2Y − 36xY 2 − 5vxy2 − 20vx2Y − 12v2Y 2+
v3y2 + 4v3xY,−540Y 2 + 64x3 + 25vy2 − 108vxY − 32v2x2 + 20v3Y + 4v4x,
125y2 + 180xY + 64vx2 − 48v2Y − 32v3x+ 4v5,−3024Y 4 − 25xy4 + 4x2y2Y+
416x3Y 2 + 132vy2Y 2 − 288vxY 3 + 5v2y4 − 80v2x2Y 2 + 160v3Y 3).

A3(fv) = V (Y, y, x) ∪ V (75y2 + 256xY,−15Y + vx,−5x+ 3v2).

A1,2(fv) = V (275y2 + 972xY,−495Y + 8vx,−60x+ 11v2) ∪ V (y, 9Y + vx,−3x+ v2).

A1,1,1(fv) = V (Y, y,−4x+ v2).
For v < 0 we can see seven real 0-stable singularities.
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Figure 18: Real part of the discriminant of fv(x, y, z) = (x, y, z6 + xz + yz2 + vz4).

4.4.3 Number of points AP , for |P| = 5

Example 4.18. Let f : (C5, 0) 7−→ (C5, 0) be given by:

f(a, b, c, d, w) = (a, b, c, d, w11 + aw4 + bw3 + cw2 + d3w2 + dw).

By [17, Corollary 4.5], we obtain that

]A5 + ]A(4,1) + ]A(3,2) + ]A(3,1,1) + ]A(2,2,1) + ]A(2,1,1,1) + ]A(1,1,1,1,1) = dimC
O5

F4(f)
= 252.

This germ is not quasihomogeneous then we can not apply the Theorem 3.8 to count
each one of the 0-stable singularities. In this case we can apply Theorem 3.9 and ide-
alsource implementation in section 3.3 to obtain the ideal I`(f,P). See the number of
isolated singularities and time to obtain them in the table below for this example. The
time is using the algorithm idealsource in Maple.

AP ]AP time in seconds
A5 06 0.17
A4,1 30 1.43
A3,2 30 0.46
A3,1,1 60 5.82
A2,2,1 60 18.45
A2,1,1,1 60 284.63
A1,1,1,1,1 06 5595.39

The third column is the time spent (in seconds) to obtain the definition ideal of the
AP-singularities in the source, |P| = 5.
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In the table above the time to compute the ideal that defines A1,1,1,1,1 was about 93min.

The time to obtain the presentation matrix to this example using the implementa-
tion prescorank1 in Maple was about 0.04sec. The time to obtain the ideal F4(f)
(ideal F4=fitting(PM,4)) and to calculate the dimC

O5

F4(f)
(vdim(std(F4))), was about

27 seconds.

Note that ]A5+]A(4,1)+]A(3,2)+]A(3,1,1)+]A(2,2,1)+]A(2,1,1,1) = dimC
O5

F4(f)
−]A(1,1,1,1,1).

Then, using together these two algorithms idealsouce and prescorank1 we can obtain
]A(1,1,1,1,1) = 06 in about (0.17 + 1.43 + 0.46 + 5.82 + 18.45 + 284.63) + 27 = 337.96sec.)

5 Singular–Libraries

5.1 idealsource.lib

Source code in Singular and Maple to compute ideals I`(f,P) that defines multiple
point spaces in the source of corank 1 map germ f : (Cn, 0)→ (Cn, 0). The idealsource.lib
file is available in [28].

Source code of idealsource in Singular

version="$Id: idealsourcelib 2018-01-23";

category="Theory of singularities";

info="

LIBRARY: idealsource.lib Comp. source ideals corank1 maps C^n-->C^n

AUTHORS: Aldicio Jose Miranda, aldicio@ufu.br,

PROCEDURES:

idealsource();

";

//-----------------------------------------------------------------------

proc idealsource(ideal f, ideal P) // P= partition of n <= dim. source ring

{

option(noredefine);

string RSName=nameof(basering); // name of source ring

string varRSName=varstr(basering);

string varParam=parstr(basering);

ideal If=ideal(f);

int sP=size(P); //size of partition P

int sf=size(f); //dim. of source/target

poly Dim; Dim=0;

for(int i=1; i<=sP;i++)

{

Dim=Dim+P[i];

if (Dim > sf)
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{

ERROR("Use partition for integer <= "+string(sf));

}

}

for(int i=1; i<= (sP-1); i++)

{

if(P[i+1] < P[i])

{

ERROR("Use a non decreasing partition!");

}

}

execute("setring "+RSName); //go to source ring

print("//f:(C^"+string(sf)+",0)--->(C^"+string(sf)+",0) ;

Partition = ["+ string(P)+"]");

string s; list H; list L;

int dimF=nvars(basering); //dimF = dim.of source

if(sf!=dimF)

{

ERROR("The dimensions of the source and target are different.");

}

for(int j=1; j <=sP; j++) //create zij variables

{

for (int i=0;i <= P[j];i++)

{

s= string(z)+string(i)+string(j);

L[i+1]=s;

}

H[j]=L;

}

if(varParam <>"")

{

string Nvars= "(0,"+varParam+"),("+string(H)+","+varRSName+"),dp";

}

else

{

string Nvars= "0,("+string(H)+","+varRSName+"),ds";

}

poly Iz;Iz=0;

for(int j=1; j<=sf;j++)

{

Iz=Iz+var(j);

}

for (int i=1; i < sf;i++)

{

Iz= subst(Iz,If[i],0);
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}

//------------------------------NEW RING-------------------------------

execute("ring NewR=" +Nvars+";" );

execute("ideal If=imap("+RSName+",If)");

execute("ideal P=imap("+RSName+",P)");

execute("poly Iz=imap("+RSName+",Iz)");

string NewRName=nameof(basering);

string varParam=parstr(basering);

string s1=string(P); //convert ideal P to string

execute("intvec Q = "+s1); //convert string s1 to intvec Q.

string s2; s2=string(z01);

poly g = If[size(If)]; poly m; m=0;

int l=size(P); int sf=size(If);

list Var0; //string variables z0k.

ideal MP; //MP = definition ideal of the

// multiple points

for (int i=1; i <= l;i++)

{

m=m+P[i];

}

string m1=string(m); execute("int m2 = "+m1);

int n = m2+l;

matrix M[n][n];

for(int j=1; j <=n; j++)

{

for (int i=1;i <= n;i++)

{

M[j,i]=var(j)^(i-1); //vandermonde denominator

}

}

poly detM=det(M);

matrix N[n][n];

int a;

for (int k=2; k<=n;k++)

{

N=M;

for(int i=1; i<=n;i++)

{

N[i,k]=(subst(g,Iz,var(i))); //k-column of N is fixed

}

poly detN=det(N);

poly g2= simplify(detN/detM,1);

a=1;

for (int t=1; t<=l; t++) //l=size(P)
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{

if(k==2)

{

Var0[t]=var(a);

}

for(int j=1; j <=Q[t]; j++)

{

g2 = subst(g2,var(a+j),var(a)); //subs z0k by zik

}

a=a+(Q[t]+1);

}

MP=MP+g2;

}

list L;

for(int i=n+1; i<=(nvars(basering)-1); i++)

{

L[i]=var(i);

}

if(varParam <>"")

{

string Tvars= "(0,"+varParam+"),("+string(Var0)+","+string(L)+"),dp";

}

else

{

string Tvars= "0,("+string(Var0)+","+string(L)+"),ds";

}

execute("ring MR=" +Tvars+";");

execute("ideal MP=imap("+NewRName+",MP)");

print("");

MP;

exportto(Top,MR);

exportto(Top,MP);

print("");

print("//To access the ideal MP, type: setring MR; MP; ");

}

Source code of idealsource in Maple

idealsource:=proc(f,part)

local U,s,p,y1,nf,y2,i,j,k,da,dv,t,H,L,T,n,V,A,h,fz,varf,vf,zz,g,su;

global W;

print(´f´=f);

nf:=nops(f); varf:=indets(f); vf:=nops(varf); fz:=f; g:=f[nf];

if nf <> vf then
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ERROR("Dimensions of source and target are different.");

fi:

for i to (nf-1) do

fz[nf]:=subs(f[i]=0,fz[nf]):

if degree(fz[nf]) <=0 then

ERROR("f is not finite,verify input!");

fi;

od;

su:=0;

for i to nops(part) do

su:=part[i]+su;

od:

if su > vf then

ERROR(‘Use partition for integer <= source dimension.‘);

fi:

zz:=indets(fz[nf])[]; print(Partition = part);

y1:=0; y2:=0;

for j to nops(part) do

for k from 0 to part[j] do

y1:=y1+1; y2:=y2+1:

H[y1]:=z[j,k];

t[y2]:=z[j,k+1]=z[j,0];

if k = part[j] then

y2:=y2-1;

fi;

od;

od;

L:=[seq(H[n], n=1..y1)]: T:=[seq(t[n], n=1..y2)];

y2:=0: y1:=0:

s:=0;

V:=vandermonde(L):

for n from 2 to nops(L) do

dv:=factor(det(V)):

for i to nops(L) do

V[i,n]:=subs(zz=V[i,2],g):

od:

A:=convert(V,matrix):

da:=factor(det(A)):

s:=s+1;

U[n-1]:=subs(T,simplify(da/dv)):

print(h[s]=U[n-1]);

W[s]:=U[n-1]:

od:

end:
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Meaning of some commands.

seq: the seq command is used to construct a sequence of values. The most typical calling
sequence is seq(f(i), i = 1..n) which generates the sequence f(1), f(2), . . . , f(n).

vandermonde(L): The function vandermonde(L) returns the Vandermonde matrix formed
from the elements of the list L. This square matrix has as its (i, j)th entry L[i](j−1).

subs: substitute subexpressions into an expression. ex.: subs(x = 2, x2 + 1) = 5.

To use this implementation entry with the following command: idealsource(f,P), where
f(x, z) = (x, g(x, z)). For example: idealsource([x, y, z4 + yz + xz2], [1, 1]) compute the
ideal I2(f, (1, 1)) that defines D2(f, (, 1, 1)) = D2(f) ⊂ C4 of map f(x, y, z) = (x, y, z4 +
yz + xz2).

> idealsource([x, y, z4 + yz + xz2], [1, 1])

f = [x, y, z4 + yz + xz2]
Partition = [1, 1]

h1 = 2 z1,0
2z2,0 + 2 z1,0z2,0

2 + y
h2 = −z1,0

2 − 4 z1,0z2,0 − z2,0
2 + x

h3 = 2 z1,0 + 2 z2,0.

5.2 presmatrix.lib

Source code of presmatrix library in Singular.

version="$Id: presmatrix.lib 2013-12-03 $";

category="Singularity Theory, Commutative Algebra";

info="

LIBRARY: presmatrix.lib Compute presentation matrix

AUTHORS: Aldicio Jose Miranda, aldicio@ufu.br

Guillermo Penafort-Sanchis, guille.elrojo@gmail.com

PROCEDURES:

presmatrix(Pullf, ISource); compute presentation matrix

AUXILIARY PROCEDURES:

Sols(nJ); return solutions of linear system of parameters

Row(rh,D,A,h); compute rh^th line of the presentation matrix

PolyGen(d); create polynomial with coefs = 1 and degree d

";

LIB "matrix.lib";

LIB "rootsur.lib";

LIB "ring.lib";
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LIB "homolog.lib";

//-----------------------------------------------------------------------

proc presmatrix(map Pullf, ideal ISource)

{

option(noredefine);

string RSName=nameof(basering); // name of source ring

execute("int E=ord_test("+RSName+")");

if (E!=-1)

{

print("//No local order ring! Get generators using local order");

}

ideal IPullf=ideal(Pullf);

execute("setring "+RSName);

string RTName=nameof(preimage(Pullf)); //name of target ring

int l=nvars(basering);

execute("int n=nvars("+RTName+")-1");

int n2=size(IPullf);

if((n+1)!=n2)

{

ERROR("Target dimension must be equal the number of entries of map!");

}

execute("string Tvars=varstr("+RTName+")");

ideal IPullf1=IPullf[1..n],ISource;

ideal KB= kbase(std(IPullf1)); //generators

int K=size(KB);

if(K==0)

{

ERROR("The number of generators must be greater than zero. Verify input!");

}

matrix Gen[1][K];

for(int r1=1;r1<=K;r1++)

{

Gen[1,r1] = KB[K-r1+1];

}

print("//Generators = "+string(Gen));

int h=K;

ring RG=0,G(1..h),ds; //auxiliar ring

ring RT=0,(X(1..n),Y),ds; //auxiliar target ring

matrix M[h][h]; //auxiliar matrix

matrix Pres=diag(Y,h); //presentation matrix

ring RS=0,(x(1..l)),ds; //internal auxiliary ring source

execute("ideal IPf=fetch("+RSName+",IPullf)"); //mapping "Pullf" to RS

execute("ideal I=fetch("+RSName+",ISource)"); //mapping "I" to RS

map Pf=RT,IPf;

int done; //indicates row done

77



for(int rh=1;rh<=h;rh++)

{

int d=1;

done=0;

while(done==0)

{

setring RT;

matrix Pols=PolyGen(d);

int np=size(Pols[1,1])+(h-1)*size(Pols[1,2])-1;

poly D=Pols[1,1];

poly A=Pols[1,2];

ring RTP1=(0,a(1..np)),(X(1..n),Y),ds;

poly D=fetch(RT,D);

poly A=fetch(RT,A);

list ML=Row(rh,D,A,h);

matrix M=ML[1];

list ParList=ML[2];

map mM=RG,M;

ring RSP1=(0,a(1..np)),x(1..l),dp;

ideal IPf=fetch(RS,IPf);

map Pf=RTP1,IPf;

ideal I=fetch(RS,I); I=std(I);

execute("matrix Gen=fetch("+RSName+",Gen)");

poly p=(Pf(mM)[1])*Gen[1,1];

for(int c=2;c<=h;c++)

{

p=p+Pf(mM)[c]*Gen[1,c];

}

p=reduce(p,I);

//---------------------------------------------------------------------

ideal J;

poly u=1;

for(int v=1;v<=l;v++)

{

u=x(v)*u;

}

matrix C=coef(p,u);

J=ideal(submat(C,2,1..ncols( C)));

int sj=size(J); int i=1; int k;

ring RP=0,(a(1..np)),dp;

ideal J=imap(RSP1,J);

list L=Sols(J);

if(L[1]==0)

{

d++;
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}

else

{

done=1;

setring RT;

list L=imap(RP,L);

list ParList=imap(RTP1,ParList);

int szS=size(L[2]); int pr;

for(int i=1;i<=szS;i++)

{

pr=L[2][i][1];

Pres[rh,ParList[pr][2]]=Pres[rh,ParList[pr][2]]+L[2][i][2]*ParList[pr][1];

}

}

}

}

execute("ring RTPr = 0, ("+Tvars+"),ds");

matrix PM[h][h]=fetch(RT,Pres);

print("");

print("// PM");

print("//R^h------>R^h------>Ox------>0; h = "+string(h)+", R = "+RTName);

print("");

print(PM);

exportto(Top,RTPr);

exportto(Top,PM);

print("");

//print("");

print("//To access the presentation matrix PM, type: setring RTPr; PM; ");

}

//-------- proc Sols return solutions of linear system of parameters-----

proc Sols(ideal nJ)

{

list L;

nJ=std(nJ);

if(reduce(1,nJ)==0)

{

L[1]=0; L[2]=list();

}

else

{

L[1]=1; L[2]=list(); poly LM, Su, Ji;number LC;

int s=size(nJ); int pos=1; int i=1;

while(L[1]==1 && i<=s)

{

Ji=nJ[i];
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LC=leadcoef(Ji);

if(LC!=0)

{

LM=leadmonom(Ji);

Su=-Ji/LC+LM;

for(int j=i+1;j<=s;j++)

{

nJ[j]=subst(nJ[j],LM,Su);

}

}

i++;

}

for(int i=s;i>=1;i--)

{

Ji=nJ[i];

if(Ji!=0)

{

LM=leadmonom(Ji);

while(univariate(Ji)==0)

{

LM=leadmonom(Ji);

nJ=subst(nJ,LM,0);

Ji=nJ[i];

}

LM=leadmonom(Ji);

Su=-Ji/leadcoef(Ji)+LM;

L[2][pos]=list(univariate(Ji),Su);

pos++;

nJ=subst(nJ,LM,Su);

}

}

}

return(L);

}

//-----------------------------------------------------------

proc Row(int rh,poly D,poly A, int h)

{

matrix M[1][h];

D=D-Y;

int sD=size(D);

int sA=size(A);

list ParList;

int c=1;

for(int j=1;j<rh;j++)

{
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for(int i=1;i<=sA;i++)

{

M[1,j]=A[i]*par( c)+M[1,j];

ParList[c]=list(A[i],j);

c++;

}

}

for(int i=1;i<=sD;i++)

{

M[1,rh]=D[i]*par( c)+M[1,rh];

ParList[c]=list(D[i],rh);

c++;

}

M[1,rh]=M[1,rh]+Y;

for(int j=rh+1;j<=h;j++)

{

for(int i=1;i<=sA;i++)

{

M[1,j]=A[i]*par( c)+M[1,j];

ParList[c]=list(A[i],j);

c++;

}

}

list L;

L[1]=M;L[2]=ParList;

return(L);

}

//-----------------------------------------------------------------

proc PolyGen(int d)

{

poly D = sparsepoly(0,d,0,1);

poly PY;

for(int i=1;i<=d;i++)

{

PY=PY+Y^i;

}

poly A = D-PY;

matrix Pols[1][2]=D,A;

return(Pols);

}
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5.3 prescorank1.lib

Source code of prescorank1 library in Singular.

version="$Id: prescorank1.lib 2016-07-15 $";

category="Singularity Theory";

info="

LIBRARY: prescorank1.lib //Compute presentation matrix for corank 1

//map from C^n to C^n

AUTHORS: Aldicio José Miranda, aldicio@ufu.br

PROCEDURES:

prescorank1(ideal f)

";

//----------------------------------------------------------------------

proc prescorank1(ideal f)

{

option(noredefine);

string RSName=nameof(basering); // name of source ring

ideal If=ideal(f); //If; ideal that define f

int sf=size(f);

execute("setring "+RSName); //go to source ring

int dimF=nvars(basering); //dimF=dim.of source

if(sf!=dimF)

{

ERROR("The dimensions of the source and target are not equal.");

}

poly J=det(jacob(If));

ideal J1=ideal(J);

if(reduce(1,J1)==0)

{

ERROR("No singularity. Verify input!");

}

if(J==0)

{

ERROR("Verify input!");

}

ideal K=kbase(std(If+J));

int nGer=size(K);

poly Iz=J;poly IzAux=J;

for (int i=1;i< dimF;i++)

{

Iz= subst(Iz,var(i),0);

IzAux= subst(IzAux,var(i),1);

}

if(size(Iz)> 1)
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{

ERROR("The map germ ("+string(f)+") is not in pre-normal form.");

}

if(deg(Iz)!=deg(IzAux))

{

ERROR("The map germ ("+string(f)+") is not in pre-normal form.");

}

int aux1= size(coeffs(J,var(dimF))[deg(Iz)+1,1]);

if( aux1> 1)

{

ERROR("The map germ ("+string(f)+") is not in pre-normal form.");

}

int d=deg(Iz);

poly coefi = coef(Iz,var(dimF))[2,1];

Iz= -(J-Iz)/coefi;

poly Izz=Iz*var(dimF);

poly t=-If[dimF]+var(dimF)^d-Izz;

matrix Pres[nGer][nGer];

matrix M,N; int sM;

for (int k=1; k <= (nGer);k++)

{

M = coef(t,var(dimF));

sM = (size(M) div 2);

if (deg(M[1,1])<nGer)

{

for (int j=1;j<=sM;j++)

{

Pres[k,deg(M[1,j])+1]=M[2,j];

}

t=t*var(dimF);

}

else

{

t=t-M[1,1]*M[2,1]+M[2,1]*Iz;

k--;

}

}

//---------------------------------------------------------------------

string varY; int truY; list L;

varY="Y"; truY=0;

for(int i=1; i<=dimF-1; i++)

{

L[i]=var(i);

}

for (int n=1; n<= dimF; n++)
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{

for (int j=1; j<= dimF; j++)

{

if (varstr(j) == varY)

{

truY=1;

varY="Y"+string(n);

break;

}

}

if (truY==0)

{

break;

}

}

string Tvars= string(L);

execute("ring RT=0,("+Tvars+","+varY+"),ds;");

matrix PM;

execute("matrix PM[nGer][nGer]=fetch("+RSName+",Pres)");

for(int i=1;i<=nGer;i++)

{

PM[i,i]=PM[i,i]+var(dimF);

}

print("");

print("// PM");

print("//R^h------>R^h------>Ox------>0; h = "+string(d)+",

R = Local target ring with variables:("+Tvars+","+varY+").");

print("");

print(PM);

exportto(Top,RT);

exportto(Top,PM);

print("");

print("//To access the presentation matrix PM, type: setring RT; PM; ");

}
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