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Abstract

The goal of these notes is to give an overview of the state of the art in classifica-
tion of multigerms. We have tried to make them self-contained but certainly not
extensive. The results included here scope most of the research on classification of
multigerms carried out in the last 15 years with special emphasis on recent publi-
cations and preprints written by the authors of these notes and their collaborators.



Chapter 1

Introduction

The foundations of Singularity Theory of Differentiable Maps can be considered
to be the fundamental works by Whitney, Thom and Mather. Their main concern
was the classification of singularities of map germs from Kn to Kp, for example,
Whitney classified stable maps from the plane into the plane in [36], proving that
any stable germ is equivalent to the fold or the cusp. Thom’s work on Catastrophe
Theory and Mather’s work ([14, 15, 16]) was followed by Arnold’s classification of
simple singularities of functions in [2]. Since then this has been one of the main
areas of research in Singularity Theory. In fact, complete classifications up to
certain codimension for certain pairs (n, p) have been carried out by many authors
([30], [31], [19], [7], [17], [34], ...) and it is still an active field of research.

The bibliography related to the classification of multigerms is less abundant.
The first reference is Mather’s classification of stable multigerms [16]. Goryunov
gave in [8] a list of multigerms without normal forms from R2 to R3 including
codimension 1 singularities. Hobbs and Kirk ([9]) and the second author in [34]
give a classification of all simple multigerms for this case. In fact, in [34] a method
that can be applied to the case Cn to Cn+1 is given. Normal forms for multigerms
from the plane to the plane are given by several authors. A good account of this
is [23]. Kolgushkin and Sadykov studied simple multigerms of curves in [13]. The
first author and Romero Fuster give normal forms of multigerms up to codimension
2 from R3 to R3 in [25].

The classification of multigerms using the classical Singularity Theory tech-
niques can be extremely hard to deal with. On the other hand, the need of new
classifications, including multigerms, with larger (n, p) is growing due to its ap-
plications to related areas in Singularity Theory such as topological invariants or
generic geometry. Therefore new techniques have been developed. For example,
operations to obtain germs in certain dimensions from germs with fewer branches
in lower dimensions have proved to be a very important tool.

In the present notes we collect the results and new techniques which have suc-
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cessfully classified all corank 1 codimension 1 ([6]) and 2 ([26]) multigerms, amongst
other things. Chapter 2 comprises the minimum necessary previous knowledge and
notation in order to follow the notes. Most results in this Chapter are due to
Mather and can be found in more detail in the survey article by Wall ([33]) or in
the draft of the future book by Mond and Nuño-Ballesteros ([20]). Chapter 3 in-
troduces some new techniques and operations necessary to obtain all codimension
1 multigerms. Chapter 4 generalizes the operations introduced in Chapter 3 and
shows how to construct all codimension 2 multigerms for any pair of dimensions in
the nice dimensions. Chapter 5 is a brief account on the simplicity of multigerms
obtained via the techniques described in the notes. Finally, Chapter 6 gives some
ideas for future research.
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Chapter 2

Preliminaries

We include here the necessary preliminaries to be able to follow the following
chapters. For a complete introduction to Singularity Theory of Differentiable Maps
we refer to the draft of the future book by Nuno-Ballesteros and Mond [20] or to
the survey by C.T.C. Wall [33].

Let Op
n be the vector space of monogerms with n variables and p components,

i.e. whose elements are germs of mappings f : (Kn, x0) → (Kp, y0), K = R or C.
When p = 1, O1

n = On is the local ring of germs of functions in n-variables and
Mn its maximal ideal. The set Op

n is a free On-module of rank p. A multigerm is
a germ of an analytic (complex case) or smooth (real case) map f = {f1, . . . , fr} :
(Kn, S) → (Kp, 0) where S = {x1, . . . , xr} ⊂ Kn, fi : (Kn, xi) → (Kp, 0). Let
MnOp

n,S be the vector space of such map germs. We call fi, i = 1, . . . , r, a branch
of f .

Two germs f, g : (Kn, S) → (Kp, 0) are R-equivalent if there exists a germ
of diffeomorphism φ : (Kn, S) → (Kn, S) such that g = f ◦ φ−1. They are L-
equivalent if there exists a germ of diffeomorphism ψ : (Kp, 0) → (Kp, 0) such
that g = ψ ◦ f . We denote by Diff(Kn, S) the group of germs of diffeomorphisms
φ : (Kn, S) → (Kn, S) and Diff(Kp, 0) the group of germs of diffeomorphisms
ψ : (Kp, 0) → (Kp, 0).

Definition 2.0.1. Two germs f, g : (Kn, S) → (Kp, 0) are A-equivalent (f ∼A g)
if there exist diffeomorphisms φ : (Kn, S) → (Kn, S) and ψ : (Kp, 0) → (Kp, 0) such
that g = ψ ◦ f ◦ φ−1, that is, following diagram commutes

(Kn, S)
f−−−−→ (Kp, 0)

φ

y yψ
(Kn, S) −−−−→

g
(Kp, 0)

Denoting by A =Diff(Kn, S)×Diff(Kp, 0) we get a group which acts on MnOp
n,S

by (φ,ψ) · f = ψ ◦ f ◦ φ−1. In fact, A = R×L.
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The contact group K is the set of germs of diffeomorphisms of (Kn×Kp, S×{0})
which can be written in the form H(x, y) = (h(x),H1(x, y)), with h ∈ Diff(Kn, 0)
and H1(x, 0) = 0 for x near 0.

Definition 2.0.2. Two germs f, g : (Kn, S) → (Kp, 0) are K-equivalent if there
exists H ∈ K such that H(x, f(x)) = (h(x), g(h(x))).

From the definition, H(graph(f)) = graph(g) and H preserves the 0-fibres.
Clearly K-equivalence implies A-equivalence, it is much broader, and it is used
when we want to preserve the type of contact of germs with certain varieties or
between different branches.

Example 2.0.3. The germs f(x, y) = (x, y3) and g(x, y) = (x, y3 + xy) are K-
equivalent but not A-equivalent.

Definition 2.0.4. Let f : (Kn, S) → (Kp, 0). An s-parameter unfolding is a
germ F : (Kn × Ks, S × {0}) → (Kp × Ks, 0) such that F (x, λ) = (fλ(x), λ) with
f0(x) = f(x) for all x ∈ (Kn, S).

Definition 2.0.5. Two s-parameter unfoldings F,G of f are isomorphic if there
exist diffeomorphisms Φ : (Kn × Ks, S × {0}) → (Kn × Ks, S × {0}) and Ψ(Kp ×
Ks, 0) → (Kp × Ks, 0) which are unfoldings of the identity in (Kn, S) and (Kp, 0)
respectively such that G = Ψ ◦ F ◦ Φ−1.

An unfolding F is trivial if it is isomorphic to the product unfolding f × id.

We have Φ(x, λ) = (ϕλ(x), x) with ϕ0(x) = id(x) and Ψ(y, λ) = (ψλ(y), y)
with ψ0(y) = id(y). If G(x, λ) = (gλ(x), x), from the definition it follows that
gλ = ψλ ◦ fλ ◦ ϕ−1

λ as maps, not necessarily as germs.

Definition 2.0.6. Let F be a s-parameter unfolding of f and h : (Kl, 0) → (Ks, 0)),
h(v) = u. Then

G = h∗F : (Kn × Rl, 0) −→ (Kp × Rl, 0)
(x, v) 7−→ (f(x, h(v)), v)

is an l-parameter unfolding of f called the pullback of F by h.

Definition 2.0.7. Two s-parameter unfoldings F,G of f are equivalent if there
exists a germ of diffeomorphism h : (Ks, 0) → (Ks, 0)) such that G is isomorphic
to h∗F .

Definition 2.0.8. An unfolding F of f is versal if every unfolding of f is iso-
morphic to h∗F for some map h. A miniversal unfolding is a versal unfolding with
a minimum number of parameters.
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Definition 2.0.9. A germ f : (Kn, S) → (Kp, 0) is stable if any unfolding F of it
is trivial.

This implies that fλ is A-equivalent to f (as a map, ϕλ and ψλ do not preserve
S and the origin, respectively).

Let θKn,S and θKp,0 be the On-module of germs at S of vector fields on Kn

and Op-module of germs at 0 of vector fields on Kp respectively. We denote them
by θn and θp. Let θ(f) be the On-module of germs ξ : (Kn, S) → TKp such that
πp ◦ ξ = f where πp : TKp → Kp denotes the tangent bundle over Kp. Therefore,
θ(f) ∼= Op

n ⊕ . . . ⊕ Op
n (r-times). Now, given f : (Kn, S) → (Kp, 0), we define

f∗ : Op → On such that f∗(h) = h ◦ f , then θ(f) is an Op-module via f∗.
Define tf : θn → θ(f) by tf(ξ) = df ◦ ξ and wf : θp → θ(f) by wf(η) = η ◦ f .

The Ae-tangent space of a germ f is defined as TAef = tf(θn)+wf(θp). We have
that tf(θn) is an On-submodule of θ(f), but it also has an Op-module structure
via f∗ and wf(θp) is an Op-submodule of θ(f) via f∗. Therefore, TAef is an
Op-module via f∗.

The Ke-tangent space of a germ f is defined as

TKe f = tf(θn) + f∗(Mp)θ(f).

Definition 2.0.10. The Ae-codimension of a germ f , denoted by Ae-cod(f), is
the K-vector space dimension of

NAe(f) =
θ(f)

TAef
.

If we consider the A-tangent space TAf = tf(Mn · θn) + wf(Mp · θp), we

similarly define the A-codimension of f as dimK
Mnθ(f)
TAf .

We define Ke-cod(f) similarly.

Theorem 2.0.11. (Mather’s infintesimal criterion, [14]) A germ f : (Kn, S) →
(Kp, 0) is stable if and only if Ae-cod(f) = 0.

This means that if f is stable, any vector field in θ(f) belongs to the tangent
space of f .

Example 2.0.12. i) f(x, y) = (x, y2). We will calculate TAef . Here θ(f) ∼=
O2

2. Let ξ = (ξ1, ξ2) ∈ θ2 be a vector field in the source and η = (η1, η2) ∈ θ2 a
vector field in the target. Writing vector fields in columns, the tangent space
is comprised by vector fields of type(

1 0
0 2y

)(
ξ1(x, y)
ξ2(x, y)

)
+

(
η1(x, y

2)
η2(x, y

2)

)
=

(
ξ1(x, y)

2yξ2(x, y)

)
+

(
η1(x, y

2)
η2(x, y

2)

)
From η1 and η2 we have constant terms in first and second rows. From ξ1 we
have any function in x and y in first row. From 2yξ2 we have any function
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with y in second row, so we are only missing pure terms in x in second row,
which we can obtain from η2. Therefore, the codimension of f is 0, i.e. it is
a stable germ (which we already knew from Whitney [36]).

ii) The bigerm f(x) = {f1, f2} = {(0, x), (x2, x3)}. Here θ(f) ∼= O2
1,S

∼= O2
1⊕O2

1.

Let ξ1, ξ2 ∈ O1 and η = (η1, η2) ∈ O2. Writing vector fields in columns, the
tangent space is comprised by vector fields of type

(
df1(ξ

1) df2(ξ
2)

)
+

(
η1(0, x) η1(x

2, x3)
η2(0, x) η2(x

2, x3)

)
=

=

(
0 2xξ2(x)
ξ1(x) 3x2ξ2(x)

)
+

(
η1(0, x) η1(x

2, x3)
η2(0, x) η2(x

2, x3)

)
From ξ1, η1 and η2 we have comprised by vector fields of type(

0 0
1 0

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
so we are missing one constant vector field. From ξ1 we get any term in x
in position (2,1). Fixing ηi(X,Y ) = XmY n with m > 0 we get xk, k ̸= 1, 3
in positions (1,2) and (2,2). Fixing ξ2(x) = x2, since we have x4 in position
(2,2), we get x3 in position (1,2), and with ξ2 = 1, since we have x2 in
position (2,2), we get x in position (1,2). Similarly we obtain x3 in position
(2,2). Having everything in position (1,2), by fixing η1(X,Y ) = Y r we get
everything in position (1,1). Therefore, we are missing, besides one constant
vector field, x in position (2,2), and so the codimension is 2.

iii) f(x, y) = (x, y3 + xy). Exercise (things are not as easy as it seems).

In general it is very difficult to calculate the codimension of a germ due to the
module structure of the tangent space. We have to use the fact that the germ is
finitely determined and ignore terms of order greater than its degree of determinacy.
As we will see, formulas and alternative methods can be extremely helpful for this
task.

Theorem 2.0.13. (Mather) Let F : (Kn × Ks, S × {0}) → (Kp × Ks, 0) be an s-
parameter unfolding of a germ f , such that F (x, λ) = (fλ(x), λ) with f0(x) = f(x).
Then F is versal if and only if

TAef + SpK{∂fλ
∂λ1

, . . . ,
∂fλ
∂λr

} = θ(f).

If furthermore, r = Ae-cod(f), then it is miniversal.
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A map germ f is said to be k-determined if any germ g such that jkg = jkf ,
where jk denotes the k-th order Taylor expansion, is A-equivalent to f . If f is
k-determined for some k <∞, then we say it is finitely determined.

Theorem 2.0.14. (Mather, [15]) A germ f : (Kn, S) → (Kp, 0) is finitely deter-
mined if and only if Ae-cod(f) <∞.

Given f = {f1, . . . , fr} : (Kn, S) → (Kp, 0), let m0(f) = dimK
On,S

f∗(Mp)
denote

the multiplicity of the germ f . Note that

dimK
On,S

f∗(Mp)
=

r∑
i=1

dimK
On,xi

f∗i (Mp)
.

A monogerm f : (Kn, 0) → (Kp, 0) is said to be of corank k if df(0) has corank
k. A multigerm f = {f1, . . . , fr} is said to be of corank k if fi is of corank less
than or equal to k, i = 1, . . . , r.

A multigerm f = {f1, . . . , fr} : (Kn, S) → (Kp, 0) with S = {x1, . . . , xr}
is simple if there exists a finite number of A-classes (classes under the action
of germs of diffeomorphisms in the source and target) such that for every un-
folding F : (Kn × Kd, S × {0}) → (Kp × Kd, 0) with F (x, λ) = (fλ(x), λ) and
f0 = f there exists a sufficiently small neighbourhood U of S × {0} such that
for every (y1, λ), . . . , (yr, λ) ∈ U where F (y1, λ) = . . . = F (yr, λ) the multigerm
fλ : (Kn, {y1, . . . , yr}) → (Kp, fλ(yi)) lies in one of those finite classes.

Definition 2.0.15. i) A vector field germ η ∈ θp is called liftable over f if there
exists ξ ∈ θn such that df ◦ ξ = η ◦ f (tf(ξ) = wf(η)). The set of vector field germs
liftable over f is denoted by Lift(f) and is an Op-module.

ii) Let τ̃(f) = ev0(Lift(f)) be the evaluation at the origin of elements of
Lift(f).

Consider (V, 0) a germ of a variety in (Kn, 0) and I ⊂ On an ideal defining V .
We define Derlog(V )={ξ ∈ θ(n) / ξ · h̃ ∈ I, ∀ h̃ ∈ I}.

In general Lift(f) ⊆ Derlog(V ) when V is the discriminant of an analytic f
and Derlog(V ) represents the Op-module of vector fields tangent to V . We have
an equality when K = C, f is complex analytic and f is finitely determined.

Example 2.0.16. Consider the germ f(x) = (x2, 0) = (X,Y ), which is not finitely
determined (exercise). The image is given implicitly by the quasihomogeneous poly-
nomial Y = 0, therefore, Derlog(f) = ⟨ ∂

∂X , Y
∂
∂Y ⟩. It is easy to see that the first

generator is not liftable, in fact in [21] it is seen (and it can be checked) that
Lift(f) = ⟨X ∂

∂X , Y
∂
∂X , Y

∂
∂Y ⟩.

The set τ̃(f) is the tangent space to the well defined manifold in the target
containing 0 along which the map f is trivial (i.e. the analytic stratum). A finite
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set E1, . . . , Er of vector subspaces of a finite-dimensional vector space F has almost
regular intersection of order k (with respect to F ) if

cod(E1 ∩ . . . ∩ Er) = codE1 + . . .+ codEr − k,

where cod represents the codimension. When k = 0 we say regular intersection
and when k = 1 we say almost regular intersection.

Theorem 2.0.17. (Mather, [16]) The multigerm f = {f1, . . . , fr} is stable if and
only if each fi is stable and τ̃(f1), . . . , τ̃(fr) have regular intersection.

Theorem 2.0.18. (Cooper, Mond, Wik-Atique [6]) If f = {f1, . . . , fr} has Ae-
codimension 1 then each fi is stable and τ̃(f1), . . . , τ̃(fr) have almost regular inter-
section:

cod(τ̃(f1) ∩ . . . ∩ τ̃(fr)) =
r∑
i=1

cod τ̃(fi)− 1.

Example 2.0.19. If f is a bigerm (r = 2) from K2 to K3 such that each branch
is an immersion, then f is either A-equivalent to:{

(x, y) 7→ (x, y, 0)

(x, y) 7→ (x, 0, y)

which is stable since τ̃(f1) = {(X,Y, Z) /Z = 0} and τ̃(f2) = {(X,Y, Z) / Y = 0},
or {

(x, y) 7→ (x, y, 0)

(x, y) 7→ (x, y, φ(x, y))

where φ is called the separation function. D. Mond proved in [19] that bigerms
of immersions are classified for A by the K-class of the separation function. So
φ(x, y) = x2 ± yk+1 (Ak); φ(x, y) = x2y ± yk−1 (Dk); φ(x, y) = x3 + y4 (E6);
φ(x, y) = x3 ± xy3 (E7); φ(x, y) = x3 + y5 (E8). Also, Ae-cod(f)=Ke-cod(φ).
Note that τ̃(f1) = τ̃(f2) = {(X,Y, Z) /Z = 0} in all these cases, therefore they
have almost regular intersection.
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Chapter 3

Multigerms of codimension 1

3.1 Reduction to KV -classification

Consider (V, 0) a germ of an analytic space in (Cp, 0) and I ⊂ Op an ideal defining
V . Let RV be the subgroup of R consisting of all germs φ ∈ R such that φ∗(I) = I,
that is, φ(V ) = V . We define KV to be the subgroup of K consisting of germs

H ∈ K, H(x, y) = (h(x),H1(x, y)), such that h ∈ RV . We set R(k)
V = RV ∩ R(k),

where R(k) = {φ ∈ R /φ = id (modMk+1
p )}. By results of R. Pellikaan [28],

JkRV = RV /R(k)
V , the set of k-jets of elements of RV , is a Lie group acting

smoothly on Jk(p, 1). We define JkKV similarly. The results of this section can be
found in [34].

The following result reduces the A-classification of multigerms to the KV -
classification of function germs. Let T ={x1, . . . , xr−1}, then S=T ∪ {xr}.

Theorem 3.1.1. Let f = {f1, . . . , fr−1} : (Cn, T ) → (Cn+1, 0) and g, g̃ : (Cn, S) →
(Cn+1, 0) be A-finite multigerms such that g = {f, gr} and g̃ = {f, g̃r}. If h, h̃ ∈
On+1 are reduced defining equations for the images of gr and g̃r respectively and
V is the image of f , then g and g̃ are A-equivalent if h and h̃ are KV -equivalent.
The converse is true if the branches of g are inequivalent.

Remark 3.1.2. Notice that once we have the KV -orbits, the A-classification fol-
lows as a quotient under the action of the permutation group on the points of
S. In particular, modality in the KV -classification implies modality in the A-
classification.

In order to obtain the KV -orbits we need to know the tangent spaces (see [4]):

Proposition 3.1.3. Let I ⊆ Op be an ideal defining V and h ∈ Op. Then
T KV,e h = th(Derlog(V )) + ⟨h⟩ and T KV h= th(Mpθp ∩Derlog(V )) + ⟨h⟩, where
Derlog(V )={ξ ∈ θp / ξ · h̃ ∈ I, ∀ h̃ ∈ I}.
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A criterion for finite determinacy can be obtained by imitating the K-case
(see [32]):

Theorem 3.1.4. If Mk+1
p ⊂ Mp T RV h + h∗M1 ·Mp + Mk+2

p then h is k−KV -
determined.

Given a germ f and a group G, we setNGef = θ(f) / T Gef . The Ge-codimension
of f is the dimension of NGef .

Theorem 3.1.5. Let f : (Cn, T ) → (Cn+1, 0) and g = {f, gr} : (Cn, S) → (Cn+1, 0)
be A-finite multigerms such that gr is an immersion. If h ∈ On+1 is a reduced
defining equation for the image of gr and V is the image of f , then the following
sequence is exact:

0 → N KV,e h → N Ae g → N Ae f → 0

Corollary 3.1.6. Under the hypotheses of Theorem 3.1.5, if f is stable then NKV,eh
is isomorphic to NAeg.

Finally, to calculate the A-codimension we have the following result due to L.
Wilson [35].

Proposition 3.1.7. Let f : (Cn, S) → (Cp, 0) be an A-finite multigerm, r = |S|.
If f is stable the Ae-codimension is equal to 0. If the Ae-codimension is strictly
greater than 0 then the following relation holds:

Ae − codimension = A− codimension+ r(p− n)− p.

The following result is a powerful tool for classification of singularities.

Proposition 3.1.8 (Mather’s Lemma). Let the Lie group G act smoothly on the
manifold M, and suppose that the submanifold S has the following properties:

1. for all x ∈ S, TxG · x ⊇ TxS;

2. the dimension of G · x is independent of the choice of x ∈ S;

3. S is connected.

Then S is contained in a single G orbit.

Example 3.1.9. If f : (C2, S) → (C3, 0) is a simple bigerm in which one of the
branches is a cross-cap, f1(x, y) = (x, y2, xy), then it is A-equivalent to one of
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f :

{
(x, y) 7→ (x, y2, xy)

(x, y) 7→ (xk, x, y)
(k ≥ 1) S0A0|1k

f :

{
(x, y) 7→ (x, y2, xy)

(x, y) 7→ (x, xk, y)
(k ≥ 2) S0A0|2k

f :

{
(x, y) 7→ (x, y2, xy)

(x, y) 7→ (x, y, yk−1)
(k ≥ 3) S0A0|3k

Let V be the image of the cross-cap. Then

Derlog(V ) = ⟨(X,−2Y, 0), (0, 2Z,X2), (X, 0, Z), (Z, 0, XY )⟩

The A-classes of such bigerms are given by the KV -classes in O3. We use
Mather’s Lemma to classify the orbits in jet spaces. First we consider the action
of J1KV on J1(3, 1). Let σ(X,Y, Z) = aX + bY + cZ be an element in J1(3, 1). It
follows from Proposition 3.1.3 that

TσJ
1KV · σ = (aX, aZ, bY, bZ, cZ) O3 (modM2

3)

There are five orbits in J1(3, 1): those of X−Y , X, Y , Z and 0. If h(X,Y, Z) =
X − Y , it follows from Theorem 3.1.4 that h is 1 − KV - determined. Also h has
KV,e-codimension 1.

We consider now germs whose 1-jet is either X, Y or Z. Let

σ1(X,Y, Z) = X +
∑

i+j+ℓ=k αi,j,ℓX
i Y j Zℓ

σ2(X,Y, Z) = Y +
∑

i+j+ℓ=k βi,j,ℓX
i Y j Zℓ

σ3(X,Y, Z) = Z +
∑

i+j+ℓ=k γi,j,ℓX
i Y j Zℓ

be elements in Jk(3, 1). Then

Tσ1J
kKV · σ1 = (X,α0,k,0Y

k, Z) O3 (modMk+1
3 )

Tσ2J
kKV · σ2 = (βk,0,0X

k, Y, Z) O3 (modMk+1
3 )

Tσ3J
kKV · σ3 = (X2, XY, γ0,k,0Y

k, Z) O3 (modMk+1
3 )

We have the following JkKV -orbits in Jk(3, 1): those of X − Y k, Y − Xk

and Z − Y k, k ≥ 2. It follows from Theorem 3.1.4 that h1(X,Y, Z) = X − Y k,
h2(X,Y, Z) = Y −Xk and h3(X,Y, Z) = Z − Y k are k −KV -determined. Also h1
and h2 have KV,e-codimension k and h3 has KV,e-codimension k + 1.

Let M be the space of quadratic forms in C3. The dimension of M is 6. If
σ ∈M then

dim TσJ
2KV σ ≤ 5

Therefore the dimension of all orbits of J2KV in M is less than the dimension of
M . Hence the orbits form a continuous family in M . Consequently a germ in O3

whose 1-jet is 0 cannot be KV -simple.
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3.2 Complete transversals

Let G be a subgroup of one of standard Mather groups R, L, A, K and define Gs
to be the subgroup of G whose elements have the s-jet equal to the identity. The
results of this section can be found in [3].

Proposition 3.2.1 (Complete Transversal to jets ). Let G be a Mather’s group
and denote the tangent space to the Jk+1G1-orbit of j

k+1f by L(Jk+1 G1).j
k+1f .

Then given f : (Kn, S) → (Kp, 0) and T ⊂ Hk+1(n, p) such that

Hk+1(n, p) ⊂ L(Jk+1G1).j
k+1f + T

any (k + 1)-jet jk+1g, with jkg = jkf , is in the same G1-orbit of jk+1f + t, for
some t ∈ T .

Definition 3.2.2. The set T is called a (k + 1)-complete transversal.

3.3 Classification of multigerms of Ae-codimension 1
and corank 1

3.3.1 Augmentations

Some results of this section can be found in [6].

Definition 3.3.1. Let h : (Kn, S) → (Kp, 0) be a map-germ with a 1-parameter
unfolding H : (Kn × K, S × {0}) → (Kp × K, 0) which is stable as a map-germ,
where H(x, λ) = (hλ(x), λ), such that h0 = h. Let g : (Kq, 0) → (K, 0) be a
function-germ. Then, the augmentation of h by H and g is the germ AH,g(h)
given by (x, z) 7→ (hg(z)(x), z). A multigerm that is not an augmentation is called
primitive.

Theorem 3.3.2. ([10],[11])

Ae − cod(AH,g(h)) ≥ Ae − cod(h)τ(g),

where τ is the Tjurina number and equality is reached when g is quasihomogeneous.

Theorem 3.3.3. ([11]) Suppose that f : (Kn, S) → (Kp, 0) is non-stable and has
a 1-parameter stable unfolding F . Then

q = dimK τ̃(F ) ≥ 1 ⇔ f is an augmentation.

More precisely, on the right hand side, f ∼A AH,g(h) for some h : (Kn−q, S′) →
(Kp−q, 0), a smooth map-germ with a 1-parameter stable unfolding H, and g :
(Kq, 0) → (K, 0) a function, q ≥ 1.

12



Proposition 3.3.4. When Ae−cod(f) = 1 and g(z) = z2, the A-equivalence class
of AF,g(f) is independent of the choice of miniversal unfolding F of f .

Example 3.3.5. The five Ae-codimension 1 multigerms from (C2, S) to C3 are:
I. S1 (the birth of two umbrellas).
II. The non-transverse contact of two immersed sheets.
III. The intersection of three immersed sheets which are pairwise transverse,

but with each one having first order tangency to the intersection of the other two.
IV. A cross-cap meeting an immersed plane.
V. A quadruple intersection.

IV and V are primitive. I is the augmentation of the cusp t 7→ (t2, t3), II is the
augmentation of a tacnode (two curves simply tangent at a point), which itself is
the augmentation of the map from two copies of C0 to C sending both points to
0 ∈ C, and III is the augmentation of three lines meeting pairwise transversely at
a point.

The following result is a partial converse.

Proposition 3.3.6. Suppose that G = idC × gλ is a one dimensional stable un-
folding of a multigerm g = g0 and suppose that h = idC × gλ2 has Ae-codimension
1. Then g has Ae-codimension 1 and G is a versal unfolding of g. Thus h is the
augmentation of g.

Given a stable map f : (Cn, S) → (Cp, 0) let Pf (the ’prism’ on f) be the
trivial 1-parameter unfolding of f . We shall say that a map-germ is a prism if it
is A-equivalent to Pg for some germ g.

Lemma 3.3.7. TAePf = OC×Cn
∂
∂Λ ⊕OCTAef .

The multigerm f can be reconstructed, up to A-equivalence, from Pf as the
top arrow in the pullback of this diagram

Cp, 0
↓ i

C× Cn, {0} × S
Pf→ C× Cp, (0, 0)

Proposition 3.3.8. Let F (λ, x) = (λ, fλ(x)) be an Ae-versal unfolding of an Ae-
codimension 1 multigerm f . Then G(µ, λ, x) = (µ, λ, fλ2+µ(x)) is an Ae-versal
unfolding of g = AF f .

Since G(µ, λ, x) = (µ, λ, fλ2+µ(x)) is an unfolding of F (µ, x) = (µ, fµ(x)) and
F is stable then G is A-equivalent to PF . Therefore if a multigerm is an augmen-
tation, its miniversal unfolding is a prism. The converse is also true:

Theorem 3.3.9. Let g be a multigerm of Ae-codimension 1 and suppose that the
miniversal unfolding G of g is a prism. Then g is an augmentation.
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3.3.2 Monic and binary concatenations

In this section we describe two basic operations, by which we “concatenate” stable
unfoldings of germs to create new multigerms. There is no reason to require purity
of dimension in a multigerm, and we allow different branches to have domains of
different dimension. The results of this section can be found in [6].

The first concatenation operation is monic: from a multigerm with r branches
we get a multigerm with r + 1 branches, in which the extra branch is a fold or an
immersion.

Theorem 3.3.10. Let f : (Kn, S) → (Kp, 0) be a multigerm of finite Ae-codimension
with a stable unfolding F on the single parameter t, let 0 ≤ k ∈ Z and let
g : (Kp ×Kk, 0) → (Kp ×K, 0) be the fold map (y, v) 7→ (y,

∑k
j=1 v

2
j ). Then

1. Ae − cod(g∗(F )) = Ae-cod(f) = Ae-cod({F, g})

2. both g∗(F ) and {F, g} have 1-parameter stable unfoldings.

Theorem 3.3.11. Suppose that the germ f of Theorem 3.3.10 has Ae- codimension
1. Then up to A-equivalence, the bigerm h = {F, g} obtained is independent of the
choice of stable unfolding F .

We denote the multigerm {F, g} by Ck(f).

Example 3.3.12. The bigerm consisting of a cross cap together with an immersed
plane transverse to the parametrisation of the cross-cap, and making contact of
degree k with the double line in the cross-cap (see section [?] is obtained by applying
C0 to the germ t 7→ (t2, t2k+1) parametrising the k-th order cusp.

The second type of concatenation is a binary operation: given germs f0 :
(Km, S) → (Ka, 0) and g0 : (Kn, T ) → (Kb, 0) with 1-parameter stable unfold-
ings F and G, we form the multigerm h essentially by putting together idKa × F
and G× idKb so that their analytic strata meet subtransversely in Ka+b+1.

Theorem 3.3.13. Suppose the two map-germs F (y, s) = (fs(y), s) and G(x, s) =
(gs(x), s) are stable, and let h be defined by{

(X, y, u) 7→ (X, fu(y), u)

(x, Y, u) 7→ (gu(x), Y, u)
.

Then provided Ae-cod (h) <∞, we have

1. Ae-cod (h) ≥ Ae-cod (f0) × Ae-cod (g0), with equality if and only if either
s ∈ ds(DerlogD(G)) or t ∈ dt(DerlogD(F )), where D(G) is the discriminant
of G;
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2. h has a 1-parameter stable unfolding;

Now suppose both f0 and g0 have Ae-codimension 1. By analogy with aug-
mentation and the first type of concatenation, one would expect the result of this
second type of concatenation to be independent, up to A-equivalence, of the choice
of stable unfoldings F and G. This is true over C but false over R.

Example 3.3.14. Let f0(y) = y3, g0(x) = x3, and take F ′(y, u) = (y3+uy, u), F ′′(y, u) =
(y3 − yu, u), G(x, u) = (x3 + ux, u). Then the multi-germs

h′ :

{
(X, y, u) 7→ (X, y3 + uy, u)

(x, Y, u) 7→ (x3 + ux, Y, u)

and

h′′ :

{
(X, y, u) 7→ (X, y3 − uy, u)

(x, Y, u) 7→ (x3 + ux, Y, u)

are not equivalent over R.

Proposition 3.3.15. Suppose that the germs f0 and g0 in Theorem 3.3.13 both
have Ae-codimension 1. Then over C, and up to A-equivalence, the germ h is
independent of choice of the 1-parameter stable unfoldings F and G.

Theorem 3.3.16. (Cooper, Mond, Wik-Atique [6]) Let h = {f, g} be a primitive
Ae-codimension 1 map-germ in the nice dimensions (with no submersive branches).
Then f and g are both stable. Also

1. If f and g are not transverse, then h is equivalent to{
(x1, . . . , xn) 7→

∑
i x

2
i

(y1, . . . , ym) 7→
∑
y2j

Now assume f is transverse to g.

2. If g is not transverse to τ̃(f), then f is transverse to τ̃(g), and h is equivalent
to {

(x1, . . . , xn, u) 7→ (fu(x), u)

(λ1, . . . , λp−1, v1, . . . , vk) 7→ (λ,
∑

i v
2
i )

(so {f, g} is equivalent to Ck(f0)).

3. If g is transverse to τ̃(f) and f is transverse to τ̃(g), then {f, g} is equivalent
to a germ of the form {

(X, y, u) 7→ (X, fu(y), u)

(x, Y, v) 7→ (gY,v(x), Y, v)
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where the target is decomposed as Ca×Cb×C, and f0 and g0 are primitive. If
also the pullback of g by τ̃(f) or the pullback of f by τ̃(g) is quasihomogeneous
then {f, g} is equivalent to{

(X, y, u) 7→ (X, fu(y), u)

(x, Y, v) 7→ (gv(x), Y, v),

i.e. to B(f0, g0).
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Chapter 4

Multigerms of codimension 2

In this chapter two new operations are introduced. Namely the simultaneous aug-
mentation and concatenation and a generalised concatenation which includes the
monic and binary concatenations as particular cases. We then show that any codi-
mension 2 multigerm can be obtained using these operations and augmentations
(with a few exceptions which are detailed in the main theorem). The results in this
chapter can be found in [26] unless otherwise stated.

4.1 Looking for candidates

The following method provides candidates of corank 1 simple multigerms (without
normal forms) for a certain codimension in a fixed pair (n, p) of source and target
dimensions.

We are considering corank 1 multigerms of type Ak1,...,kr , for which it is known
that their corresponding orbits in the multijet space are defined by submersions
in the stable case and by complete intersections in the finitely determined case
([7],[18]).

We repeat her the close relation between theA-codimension and theAe-codimension
due to Wilson’s formula

Ae − cod(f) = A− cod(f) + r(p− n)− p,

where r is the number of branches.
Let f = {f1, . . . , fr} : (Kn, S) −→ (Kp, y) be a non-stable multigerm with A-

codimension s. Let’s assume that f is k-determined and A-simple. Suppose there
exists a smooth submanifold X ⊂ rJ

k(Kn,Kp) such that for all g : Kn −→ Kp

and for all {z1, . . . , zr} ⊂ Kn we have that rj
kg(z1, . . . , zr) ∈ X if and only if the

multigerm of g in {z1, . . . , zr} is A-equivalent to f . We have:

Lemma 4.1.1. cod
rJk(Kn

,Kp
)X = s+ (r − 1)p.
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Proof. This is proved by standard multijet and transversality techniques, for a
detailed account see [24].

If the A-codimension of fj is ij , j = 1, . . . , r, this means that each fj defines
a smooth submanifold in the appropriate jet space of respective codimension ij .
These submanifolds are defined by i1, . . . , ir equations respectively.

If we consider the submanifold X ⊂ rJ
k(Kn,Kp) defined by the equations

which define the multigerm (i.e. the equations which define each of the branches,
which are independent since they involve different variables, plus the equations
arising from all the points having the same image in the target space), we have
that its codimension is i1 + . . .+ ir + (r − 1)p (the (r − 1)p extra equations come
from f(x1) = ... = f(xr)). From the previous Lemma the codimension of such a
submanifold is s+(r− 1)p, so we deduce that the A-codimension of the multigerm
is s = i1 + . . . + ir. In the case of some type of contact between the strata of the
discriminant of different branches, other equations describing these contacts should
be added to define the corresponding submanifold in the multijet space and so, in
that case s ≥ i1 + . . .+ ir.

Example 4.1.2. i) Consider maps from K2 to K2. The only stable monogerms
are the fold of A-codimension 1 and the cusp of A-codimension 2. To find
all trigerms of Ae-codimension 2 (which means A-codimension 4) we set the
equation 4 = i1 + i2 + i3 + c, where the ij are the A-codimension of the
three branches and c corresponds to the number of equations defining contacts
between the branches. The only possibilities are i1 = i2 = i3 = c = 1 and
i1 = i2 = 1, i3 = 2, c = 0. These two respresent a trigerm with 3 fold
branches, two of which have a first order tangency and two transversal fold
branches together with a cusp transversal in the limit to both fold branches,
respectively.

ii) For Ae-codimension 2 bigerms from K3 to K3 (which means A-codimension
5) we set the equation 5 = i1 + i2 + c. Now there are many more possibilities
since c ∈ {0, 1, 2, 3}. For example, if i1 = 1, i2 = 4, c = 0 we have an Ae-
codimension 1 monogerm and a fold with transversality amongst all the strata.
An other possibility is that i1 = i2 = 2, c = 1, which represents two cuspidal
edges where the tangent line to one of the cuspidal edges is contained in the
tangent plane in the limit to the other cuspidal edge (T 1

22 in the notation of
[25]).

In some cases, one same configuration may lead to different germs. If i1 =
1, i2 = 2, c = 2 we have a fold and a cuspidal edge, but c = 2 may represent a
tangency between the tangent plane in the limit of the cuspidal edge and the
fold surface (T 1

12) or a degenerate tangency between the cuspidal edge curve
and the fold surface DT12.

18



4.2 Simultaneous augmentation and concatenation

The operations introduced in the previous Section provide complete lists of Ae-
codimension 1 germs but the might fail to give complete lists for Ae-codimension
2 as we will see in the next example for which we will need two previous results:

Lemma 4.2.1. Let f = {f1, . . . , fr} : (Kn, S) → (Kp, 0) be a stable corank 1 germ.
Then m0(f) ≤ n+ r if n = p and m0(f) ≤ [n+1+r

2 ] if p = n+ 1.

From ii) in Example 4.1.2, as a candidate of an Ae-codimension 2 bigerm from
K3 to K3 we get an Ae-codimension 1 monogerm and a fold. Lets take for example
421 from the list in [17], i.e. f(x, y, z) = (x4 + yx + z2x2, y, z) and consider the
bigerm

h = {f, g} =

{
(x4 + yx+ z2x2, y, z)

(x, y, z2)

which does, in fact, have codimension 2. We want to know wether this bigerm
can be obtained by any of the previous operations. First of all, it cannot be a
monic or binary concatenation since f is not stable. Next, to see wether h is an
augmentation, we must check wether it admits a 1-parameter stable unfolding. To
see wether a germ admits a 1-parameter stable unfolding or not we first see its
multiplicity. An unfolding H of h will have the same multiplicity than h, which is
6=4+2, so h could admit a 1-parameter stable unfolding in principle. In fact

H = {F,G} =

{
(x4 + yx+ z2x2 + tx2, y, z, t)

(x, y, z2, t)

is a 1-parameter stable unfolding of h. However, F is a curve of swallowtail points
and G is a fold 3-manifolds transversal to this curve, so τ̃(F ) = {0}. Therefore, h
is not an augmentation either.

In any case, it is clear that f is an augmentation of f0(x, y) = (x4+ yx, y), and
g is a fold similar to the one which appear in the monic concatenation. It is quite
natural to define:

Definition 4.2.2. Suppose f : (Kn, S) → (Kp, 0) has a 1-parameter stable unfold-
ing F (x, λ) = (fλ(x), λ). Let g : (Kp × Kn−p+1, 0) → (Kp × K, 0) be the fold map
(X, v) 7→ (X,Σn+1

j=p+1v
2
j ). Then, the multigerm {AF,ϕ(f), g}, where ϕ : K → K, is

called the simultaneous augmentation and monic concatenation of the germ f by
F and ϕ.

This definition is consistent because of the following

Theorem 4.2.3. Up to A-equivalence, if K = C and Ae − cod(f) = 1, the multi-
germ {Af, g} is independent of the choice of miniversal unfolding F of f .
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It is important to be able to know the codimension of a multigerm produced
by this operation.

Theorem 4.2.4.

Ae − cod({AF,ϕ(f), g}) ≥ Ae − cod(f)(τ(ϕ) + 1),

where τ is the Tjurina number of ϕ. Equality is reached when ϕ is quasi-homogeneous.

Example 4.2.5. Let fl(x, y) = (x3 + ylx, y) and Fl(x, y, z) = (x3 + ylx+ zx, y, z)
with augmentations AmFl(x, y, z) = (x3+ylx+zmx, y, z) of codimension (l−1)(m−
1). The simultaneous augmentation and concatenation produces the bigerm

{AmFl, g} =

{
(x3 + ylx+ zmx, y, z)

(x, y, z2)

whose codimension is (l − 1)(m− 1) + (l − 1) = (l − 1)m.

Similarly to augmentations, simultaneous augmentations and concatenations
admit 1-parameter stable unfoldings

Proposition 4.2.6. The multigerm {AF,ϕ′(f), G} where ϕ′(z, µ) = ϕ(z) + µ and
G(X, v, µ) = (X,Σn+1

j=p+1v
2
j , µ) is a 1-parameter stable unfolding of {AF,ϕ(f), g}.

Let f : (Kn, 0) → (Kp, 0) be a map germ and F (x, λ) = (fλ(x), λ) a 1-parameter
unfolding. We say that F is a substantial unfolding if λ is contained in dλ(Lift(F )).

Theorem 4.2.7. ([5]) Suppose f : (Cn, 0) → (Cn+1, 0) satisfies the Mond conjec-
ture and has a 1-parameter substantial stable unfolding F (x, λ) = (fλ(x), λ). Let
g : (Cn+1, 0) → (Cn+1 × C, 0) be the immersion X 7→ (X, 0). Then, the multigerm
{AF,ϕ(f), g}, where ϕ : (C, 0) → (C, 0), satisfies the Mond conjecture, i.e.

Ae − cod({AF,ϕ(f), g}) ≤ µI({AF,ϕ(f), g}).

Equality is reached if both f and ϕ are quasihomogeneous.

4.3 Generalised concatenation

One might ask at this point wether we have defined enough operations already to
obtain all codimension 2 germs. The answer is no. In ii) of Example 4.1.2, another
candidate for an Ae-codimension 2 bigerm from K3 to K3 was T 1

22, two cuspidal
edges where the tangent line to one of the cuspidal edge curves is contained in the
tangent plane in the limit of the other cuspidal edge. Consider the Ae-codimension
2 (exercise) bigerm

h = {f, g} =

{
(x3 + y2x+ zx, y, z)

(x, y, z3 + yz)
.
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A 1-parameter stable unfolding H would have multiplicity 6 and would consist of
two cuspidal edge surfaces, which in R4 intersect generically in one point. This
means that the analytic stratum of H would be {0}, and therefore h is not an
augmentation. It is not a monic concatenation or a simultaneous augmentation
and concatenation because there is no fold.

Notice that from the definition of binary concatenation it follows that f t τ̃(g)
and g t τ̃(f). The bigerm h satisfies that f t τ̃(g) but the tangent line to f is
contained in the tangent plane in the limit of g, i.e. g is not transversal to τ̃(f).
This means that h is not a binary concatenation.

The idea is to generalize the concept of concatenation in order to be able to
concatenate with singularities more degenerate than a fold or an immersion.

Definition 4.3.1. Let f : (Kn−s, S) → (Kp−s, 0), s < p, be of finite Ae-codimension
and let F : (Kn, S × {0}) → (Kp, 0) be a s-parameter stable unfolding of f with

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fp−s(x1, . . . , xn), xn−s+1, . . . , xn),

where Fi(x1, . . . , xn−s, 0, . . . , 0) = fi(x1, . . . , xn−s). Suppose that g : (Kn−p+s, T ) →
(Ks, 0) is stable. Then the multigerm {F, g} is a generalised concatenation of f with
g, where g = IdKp−s × g.

Observe that with this definition, dim τ̃(g) ≥ p−s ≥ 1. If g is a monogerm and
dim τ̃(g) = p− s, it is of the form

g(x1, . . . , xn) = (x1, . . . , xp−s, gp−s+1(xp−s+1, . . . , xn), . . . , gp(xp−s+1, . . . , xn)).

Therefore, the definition implies that F t τ̃(g).
This definition is independent up to A-equivalence of the choice of parametri-

sation of g as long as it is an (p− s)-parameter suspension of a germ g. This was
proved in [5] for a particular case of generalized concatenation but the proof can
be adapted to the general case.

Proposition 4.3.2. Given g̃ = idKn−2 × g̃0, where g̃0 is A-equivalent to g, there
exists an s-parameter stable unfolding F ′ of f such that {F ′, g̃} is A-equivalent to
{F, g}.

Remark 4.3.3. i) The monic concatenation is recovered by taking s = 1 and
gp(xp, . . . , xn) = Σni=px

2
i (or gp = 0 when n = p− 1).

ii) A binary concatenation h = {F,G}{
(X, y, u) 7→ (fu(y), u,X)

(x, Y, u) 7→ (Y, u, gu(x))

is also a generalised concatenation where p = a+1+b, n = b+m+1 = l+a+1
and s = b+ 1. In fact, the first branch is a b+ 1-parameter stable unfolding
of an f0 and τ̃((u, gu(x))) = {0} when g0 is not stable.
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This operation is very general and cannot be studied in such a form, so we study
particular cases where the stable germ g is given. In [26] and [5] three examples
are studied, namely the cuspidal concatenation, the double fold concatenation and
the cross-cap concatenation.

Theorem 4.3.4. Consider f : (Kn−2, S) → (Kn−2, 0) with n ≥ 3, F (x, λ) =
(fλ(x), λ) a 2-parameter stable unfolding of f and

g(x1, . . . , xn−2, y, z) = (x1, . . . , xn−2, y, z
3 + yz)

being a suspension of a cusp. We call the multigerm {F, g} the cuspidal concate-
nation of f .

We have

Ae − cod({F, g}) = dimK
On−1

{ξ : ξ = −zηn−1(x,−3z2,−2z3) + ηn(x,−3z2,−2z3)}
,

where ηn−1 and ηn are the last two components of vector fields in Lift(F ).

Example 4.3.5. Consider f(x) = x3 and a 2-parameter stable unfolding F (x, λ1, λ2) =
(x3+λ21x+λ2x, λ1, λ2). The cuspidal concatenation of f is the germ T 1

22 with which
we began this section. Studying Lift(F ) we can prove that the Ae-codimension is
in fact 2.

Another type of generalised concatenation is to concatenate with two fold hy-
persurfaces (in the equidimensional case, but the operation can be defined for n ̸= p
too).

Theorem 4.3.6. Let f : (Kn−2, S) → (Kn−2, 0) (n ≥ 3) be a finitely determined
germ, F (x, λ) = (fλ(x), λ) a 2-parameter stable unfolding of f and g = {g1, g2}
where {

g1(x1, . . . , xn−2, y, z) = (x1, . . . , xn−2, y, z
2)

g2(x1, . . . , xn−2, y, z) = (x1, . . . , xn−2, y, z
2 + y).

We call the multigerm {F, g} the double fold concatenation of f .
We have

Ae− cod({F, g}) = Ae− cod({F, g1})+dimK
On−1

{ξ : ξ = −ηn−1(x, y, y) + ηn(x, y, y)}
,

where ηn−1, ηn are the last two components of vector fields in Lift({F, g1}).

For the case n = p− 1 we can define

Theorem 4.3.7. ([5]) Consider f : (Kn−3, S) → (Kn−2) with n ≥ 3, F (x, λ) =
(fλ(x), λ) a 3-parameter stable unfolding of f and

g(x1, ..., xn−3, y, z, w) = (x1, ..., xn−3, y, z, w
2, zw),
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a suspension of a crosscap. We call the multigerm {F, g} the crosscap concatenation
of f .

We have

Ae − cod({F, g}) = dimK
On ⊕On

T0
,

where T0 = {(ξ1, ξ2); ξ1 = 2wvn(x, y, z, w)+ηn(x, y, z, w
2, zw) and ξ2 = −wηn−1(x, y, z, w

2, zw)+
zvn(x, y, z, w) + ηn+1(x, y, z, w

2, zw)}, ηn−1, ηn and ηn+1 are the last three compo-
nents of vector fields in Lift(F ) and vn ∈ On.

Example 4.3.8. Let f(x) = (x2, x3) and the family of 3-parameter stable unfold-
ings Fl(x, y, z, w) = (x2, x3+xyl+xz, y, z, w), l ≥ 1. Concatenating with a crosscap
we obtain the bigerms

{Fl, g} :

{
(x2, x3 + xyl + xz, y, z, w)

(x, y, z, w2, zw)
.

Studying Lift(Fl) we can prove Ae-cod({Fl, g}) = l.
Now consider the 3-parameter stable unfolding:

F∞ : (x2, x3 + xy, y, z, w).

It can be seen that {F∞, g} is not finitely determined.

4.4 Ae-codimension 2 multigerms

We can now prove that we have defined enough operations to obtain all Ae-
codimension 2 multigerms. It is natural that in low dimensions, that is, p ≤ 2,
there will appear some special multigerms which cannot be obtained from any
simpler germ. First we need the following

Proposition 4.4.1. Let h = {h1, . . . , hr} : (Kn, S) → (Kp, 0) (p > 1) be a multi-
germ of Ae-codimension 2. Then

i) If h1 is non stable, then r = 2 and h2 is a prism on a Morse function or an
immersion.

ii) If r ≥ 3 then hi is stable for every i ∈ {1, . . . , r}.

iii) If hi is stable for every i ∈ {1, . . . , r}, then h = {f, g} where both f and g are
stable.

This is not true for p = 1 since a trigerm of three Morse functions has codi-
mension 2 and cannot be separated into two stable germs.

Finally we have the main result of this section.
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Theorem 4.4.2. Let h = {f, g} be of Ae-codimension 2, then

1) if f is a monogerm of Ae-codimension 1, then g a prism on a Morse function
or an immersion and

i) h is an augmentation if and only if f is an augmentation with m0(f) ≤ p
when n ≥ p (m0(f) ≤ [n2 ] when p = n+ 1),

ii) h is a simultaneous augmentation and concatenation if f is an augmen-
tation with m0(f) = p+1 when n ≥ p (m0(f) = [n2 ]+1 when p = n+1),

iii) if p = 1, 2 and m0(f) = p + 2 when n ≥ p (m0(f) = [n2 ] + 2 when
p = n+ 1) then f is a primitive monogerm of codimension 1,

iv) if (n, p) = (3, 4) and m0(f) = 3 then h is A-equivalent to{
(u, v, x3 + ux, x4 + vx)

(u, v, u, x)

2) if f and g are stable, then

i) cod(τ̃(f)) + cod(τ̃(g)) ≤ p if and only if h is an augmentation,

ii) if h is primitive and g is not transverse to τ̃(f), then

a) if f t g, then

a1) Suppose g is a monogerm. When Im(dg0) = τ̃(g), h is a monic
concatenation. When Im(dg0) % τ̃(g), then either h is a (non-
monic) generalised concatenation with g, it is a bigerm with two
A2-singularities or it is a trigerm of an A2-singularity with two
prisms on Morse functions (only if n ≥ p = 2).

a2) Suppose g is a multigerm, then it is a bigerm and either h is a
double fold (immersion) concatenation with g or it is a trigerm
of an A2-singularity with two prisms on Morse functions (only
if n ≥ p = 2).

b) If g and f are not transverse then f is a Morse function and g is
an A2-singularity (only if n ≥ p = 2), h is a simultaneous aug-
mentation and concatenation or, when p = n + 1 and n even, it is
A-equivalent to

n = 2

{
(x, y2, xy)

(x, x2, y)
, n = 4

{
(u1, v1, v2, y

3 + u1y, v1y + v2y
2)

(u1, v1, v2, u
2
1 + v2, y)

,

n = 2k−2, k ≥ 4

{
(u1, . . . , uk−2, v1, . . . , vk−1, y

k +
∑k−2

i=1 uiy
i,
∑k−1

i=1 viy
i)

(u1, . . . , uk−2, v1, . . . , vk−2, uk−3 + u2k−2, vk−1, y)
.
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iii) if h is primitive, g t τ̃(f) and f t τ̃(g), then h is a non-monic gener-
alised concatenation.

We show an example of how to obtain all Ae-codimension 2 multigerms from
K3 to K3, which were first obtained in [25]. We start with Ae-codimension 1 germs
from K to K to obtain germs from K2 to K2, and then, these germs, together with
the special germs in the Theorem and the Ae-codimension 2 germs from K to K
we obtain a complete list for n = p = 3. We know the list is complete because we
have exhausted all the possibilities for the operations.

{x ,x }
2 2

cod 1 cod 2

A
2

A
3

AC
MC

x
3

A
2

A
3

AC
MC

primitive

primitive
+ Morse

f     g

f     gf     g

g    τ(f)

g    τ(f)

Figure 4.1: Codimension 1 and 2 germs and multigerms of maps from C2 to C2.
The cases where a codimension 1 germ appears, a stabilisation is represented.

For example, from {x2, x2}, we take a 1-parameter stable unfolding given by
{(x2 + y, y), (x2, y)}. We can augment it to obtain {(x2 + yk, y), (x2, y)} which is
an ordinary tangency between to fold curves when k = 2 or a degenerate tangency
when k = 3. We can also do a monic concatenation to obtain an ordinary triple
point {(x2+y, y), (x2, y), (x, y2)}, and, finally, we can simultaneously augment and
concatenate it to obtain the Ae-codimension 2 trigerm {(x2+y2, y), (x2, y), (x, y2)}.

Notice that a same multigerm can be obtained from different germs by different
operations. For example, take the Ae-codimension 1 bigerm {(x2, y), (x, y3 + xy)}
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Figure 4.2: Codimension 2 germs and multigerms of maps from C3 to C3. CC and
DFC stand for cuspidal concatenation and double fold concatenation respectively.

and its 1-parameter stable unfolding {(x2+z, y, z), (x, y3+xy, z)}. We can augment
it by ϕ(z) = z3 or simultaneously augment and concatenate it to obtain the germs

{
(x2 + z3, y, z)

(x, y3 + xy, z)
and


(x2 + z2, y, z)

(x, y3 + xy, z)

(x, y, z2)

resp.
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However, the bigerm above can also be obtained by doing a monic concatenation
to (x, y3 + x3y), which would yield {(x, y3 + x3y + zy, z), (x, y, z2)} and is A-
equivalent to the normal form above. And the trigerm can be obtained by doing
a monic concatenation to the bigerm {(x2, y), (x, y3 + x2y)}, which would yield
{(x2, y, z), (x, y3 + x2y + yz, z), (x, y, z2)} and again is A-equivalent to the normal
form above.
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Chapter 5

Simplicity of multigerms

A natural question arises regarding the simplicity of multigerms: Are the multi-
germs produced by all the operations mentioned up to now simple? If not, what
conditions can be added in order to ensure simplicity? All of the results in this
chapter can be found in [27].

For the simplicity of augmentations we have the following result for monogerms.
We believe that it is true for multigerms too, but the proof in [27] can only be
adapted for certain classes of multigerms.

Theorem 5.0.3. Let h : (Kn, 0) → (Kp, 0) with n ≥ p − 1 be a non stable primi-
tive monogerm which admits a 1-parameter stable unfolding H. Let g1 and g2 be
augmenting functions and f1 and f2 the corresponding augmentations. Then

f1 ∼A f2 ⇒ g1 ∼K g2.

This means that, given an augmentation AH,g(h) of a germ h, if the augmenting
function g is not simple, then the augmentation is not simple.

Example 5.0.4. i) The hypothesis of f being primitive is necessary. Let f(x, y) =
(x3+y4y, y) and g(z) = z4, both of which are simple (A and K, respectively).
AF,g(f)(x, y, z) = (x3 + (y4 + z4)x, y, z) is not simple because it is the same
as AH,ϕ(h) where h(x) = x3 is primitive and ϕ(y, z) = y4 + z4 is not simple.

ii) The converse is not true. Consider the primitive simple germ f(z) = (z2, z5)
and the simple function g(x, y) = x2+y4. The augmentation AF,g(f)(x, y, z) =
(x, y, z2, z5 + (x2 + y4)z) is not simple (see [12]).

For the operation of simultaneous augmentation and concatenation we also have
a very nice result:

Theorem 5.0.5. Suppose f : (Kn, S) → (Kp, 0) has a 1-parameter stable unfolding
F (x, λ) = (fλ(x), λ). Let g : (Kp × Kn−p+1, 0) → (Kp × K, 0) be the fold map
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(X, v) 7→ (X,Σn+1
j=p+1v

2
j ). Suppose that ϕ is quasi-homogeneous and AF,ϕ(f) is

simple, then Ae − cod(f) = 1 implies that {AF,ϕ(f), g} is simple. Furthermore, if
g is transverse to the limits of the tangent spaces of the strata of AF,ϕ(f), then the
converse is also true.

Example 5.0.6. i) Let f(y) = (y2, y3) and consider the augmentations and
concatenations {

(y2, y3 + xk+1y, x)

(y, x, 0)
(5.1)

These bigerms are called A0Sk (k ≥ 1) in [9] and [34] and are simple.

ii) Let f(y) = (y2, y5) and consider the augmentation and concatenation{
(y2, y5 + x2y, x)

(y, x, 0)
(5.2)

The bigerm A0B2 is not simple since Ae − cod(f) = 2 and the immersion is
transverse to the strata of B2. Therefore, the bigerms A0Bk are not simple
for k > 1.

iii) The extra hypothesis for the converse of Theorem 5.0.5 to be true is nec-
essary. If we simultaneously augment and concatenate the codimension 2
bigerm {(x2, y), (x2+y3, y)} we obtain the codimension 4 simple trigerm ([34])

(x2, y, z)

(x2 + y3 + z2, y, z)

(x, y, z2)

(5.3)

Notice that the double point curve for {(x2, y, z), (x2+y3+z2, y, z)} describes
a cusp which is tangent in the limit to g.

For the case of generalised concatenations many partial results can be obtained,
but the operation is too general in order to get general results.

Theorem 5.0.7. Let h = {f, g} be a non-monic generalised concatenation (i.e. g
is not a prism on a Morse function or an immersion) and suppose that τ̃(f) = {0},
then h is non simple.

Example 5.0.8. Let f(x) = x4 and consider the 2-parameter stable unfolding
F (x, λ1, λ2) = (x4 + λ1x + λ2x

2, λ1, λ2). We obtain the non simple cuspidal con-
catenation {

(x4 + yx+ zx2, y, z)

(x, y, z3 + xy)
(5.4)
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Proposition 5.0.9. i) Let f = {f1, . . . , fr} : (Kn, S) → (Kn, 0) be a primitive
Ae-codimension 1 germ, n > 2. Then the multigerm h = {f,A1} is not
simple.

ii) Let f : (Kn, 0) → (Kn+1, 0) be a primitive Ae-codimension 1 germ, n > 3.
Then the multigerm h = {f,A0} is not simple.

Theorem 5.0.10. Let h = {f, g} is a multigerm with f a non stable germ and
g a prism on a Morse function or an immersion and suppose that g is transverse
to the limits of the tangent spaces of f . Then h is simple if and only if either
f is an augmentation of an Ae-codimension 1 germ (i.e. h = {AP,ϕ(p), g} with
Ae − cod(p) = 1) or h is one of the following:

i) When p = 1, the bigerm of a Morse function and an A2-singularity or the
trigerm of 3 Morse functions.

ii) If n = 1 and p = 2, the codimension 2 bigerm {(x2, x3), (0, x)}, and if n =
p = 2 the codimension 2 bigerm{

(x4 + yx, y)

(x, y2 + x)
(5.5)

and the trigerm 
(x3 + xy, x)

(x, y2)

(x, y2 + x)

(5.6)

iii) When (n, p) = (3, 4), the bigerm{
(u, v, x3 + ux, x4 + vx)

(u, u, v, x)
(5.7)
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Chapter 6

Future research

The reader may have noticed that in many of the examples, in order to carry out
the computations one must know the liftable vector fields of certain germs. For
example, given a bigerm h = {f, g}, it is proved in [26] that the following sequence
is exact

0 −−−−→ θ(g)
tg(θn+1)+wg(Lift(f))

−−−−→ NAe({f, g})
h−−−−→ NAe(f) −−−−→ 0

Therefore

Ae − cod({f, g}) = Ae − cod(f) + dimK
θ(g)

tg(θn+1) + wg(Lift(f))
.

However, computing Lift(f) is not easy in general. The study of liftable vector
fields is still an active field of research. Recently, in [21], a systematic method
to obtain liftable vector fields of some corank 1 germs is given. In particular the
method can be applied to stable germs. Furthermore, in [22], it is shown how
to recover liftable vector fields of any germ from the liftable vector fields of an
s-parameter stable unfolding. This is an important starting point but there is still
much to do. For example, little is known about liftable vector fields of corank 2
maps.

Very little is known of corank 2 germs in general. [29] and [1] are recent devel-
opments in this area. It would be interesting to study how the operations studied
throughout the paper behave in corank 2, since they may provide many examples
of finitely determined corank 2 germs.

There is still much to be understood about the simplicity of multigerms. Some
advances are being done in [?], but there is much more to be done.

In certain contexts such as applications of Singularity Theory to Differential
Geometry, classifications with geometric subgroups different from A are carried
out. It would be interesting to explore how all these operations and classification
techniques apply to VK and VR classifications.
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Many of the operations depend on the existence of a 1-parameter stable unfold-
ing. However, it is not fully understood when a germ admits a 1-parameter stable
unfolding. Certainly there is a bound on the multiplicity, but not all germs with
multiplicity lower than this bound admit 1-parameter stable unfoldings. Certain
evidence shows that most simple germs admit 1-parameter stable unfoldings and
a list of exceptions can be produced, but this is still far from understanding what
condition ensure the existence. Maybe it could be related to the liftable vector
fields of the germ.

The Mond conjecture is known to be satisfied by augmentations and codimen-
sion 1 and 2 monic and binary concatenations, and so, in [6] it is concluded that
all codimension 1 germs satisfy the Mond conjecture. In [5] is is proved that the
simultaneous augmentation and concatenation satisfies the Mond conjecture. Due
to Theorem 4.4.2, if the Mond conjecture is satisfied for multigerms obtained via
the operation of generalised concatenation, then all codimension 2 germs would
satisfy the conjecture. It may be difficult to prove this in general, but a possibility
is to start with particular examples of non-monic generalised concatenations. This
could be an alternative method to prove the Mond conjecture.

32



Bibliography

[1] A. Altintas Examples of finitely determined map germs of corank
2 from n-space to n + 1-space. Internat. J. Math. 25 (2014), no. 05,
1450044, 17pp.

[2] V. I. Arnol´d Critical points of smooth functions and their normal
forms. Russian Math. Surveys 30 (1975) (or in Singularity Theory, LMS
Lecture Note Series 53, Cambridge UP (1981)).

[3] J. W. Bruce, N. P. Kirk and A. A. du Plessis Complete transver-
sals and the classification of singularities. Nonlinearity 10 (1997), no.
1, 253-275.

[4] J.W. Bruce and M. Roberts Critical points of functions on analytic
varieties Topology 27 (1988), 57-90.

[5] C. Casonatto, R. Oset Sinha A note on the Mond conjecture. J.
Singul. 12 (2015), 19–26.

[6] T. Cooper, D. Mond and R. Wik Atique Vanishing topology of
codimension 1 multi-germs over R and C. Compositio Math 131 (2002),
no. 2, 121-160.

[7] V. Goryunov Singularities of projections of complete intersections. J.
Soviet Math. 27 (1984), 2785-2811.

[8] V. Goryunov Local invariants of mappings of surfaces into
three space. The Arnol´d-Gelfand mathematical seminars 223-225.
Birkhauser, Boston, (1997).

[9] C. A. Hobbs and N. P. Kirk On the classification and bifurcation of
multigerms of maps from surfaces to 3-space. Math. Scand. 89 (2001),
no. 1, 57-96.

[10] K. Houston On singularities of folding maps and augmentations.
Math. Scand. 82 (1998), no. 2, 191–206.

33



[11] K. Houston Augmentation of singularities of smooth mappings. In-
ternat. J. Math. 15 (2004), no. 2, 111-124.

[12] K. Houston and N. Kirk On the classification and geometry of
corank 1 map-germs from three-space to four-space. Singularity theory
(Liverpool, 1996), xxii, 325-351, London Math. Soc. Lecture Note Ser.,
263, Cambridge Univ. Press, Cambridge, 1999.

[13] P. A. Kolgushkin and R. R. Sadykov Simple singularities of multi-
germs of curves. Rev. Mat. Complut. 14 (2001) 311-344.

[14] J. N. Mather Stability of C∞ mappings. II. Infinitesimal stability
implies stability. Ann. of Math. (2) 89 1969 254–291.

[15] J. N. Mather Stability of C∞ mappings. III. Finitely determined
mapgerms. Inst. Hautes Études Sci. Publ. Math. No. 35 1968 279–308.

[16] J. N. Mather Stability of C∞ mappings IV: Classification of stable
maps by R-algebras. Inst. Hautes Études Sci. Publ. Math. No. 37 1969
223–248.

[17] W. L. Marar and F. Tari. On the geometry of simple germs of co-
rank 1 maps from R3 to R3. Math. Proc. Cambridge Philos. Soc. 119
(1996), no. 3, 469–481.

[18] W. L. Marar and D. Mond. Multiple point schemes for co-rank 1
maps. J. London Math. Soc. 39 (1989), 553–567.

[19] D. Mond On the Classification of Germs of Maps From R2 to R3.
Proc. London Math. Soc. (3), 50, 333-369, (1983).

[20] D. Mond and J. J. Nuño Balles-
teros Singularities of Mappings. Available at
http://homepages.warwick.ac.uk/ masbm/LectureNotes/book.pdf.

[21] T. Nishimura, R. Oset Sinha, M. A. S. Ruas and R. Wik Atique
Liftable vector fields over corank 1 map germs.. To appear in Mathe-
matische Annalen, DOI 10.1007/s00208-015-1340-7.

[22] J. J. Nuño Ballesteros and R. Oset Sinha Notes on liftable
vector fields. Preprint.

[23] T. Ohmoto and F. Aicardi First order local invariants of apparent
contours. Topology 45 (2006), no. 1, 27–45.

[24] R. Oset Sinha Topological invariants of stable maps from 3-manifolds
to three-space. PhD Thesis. Universitat de València (2009).
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