School on Singularity Theory Mini-course on Applications of Singularities

Isabel S. Labouriau

Centro de Matemática da Universidade do Porto — Portugal

São Carlos, SP, Brasil 17 – 22 July 2016

Deformation of an elastic cube under uniform traction

 $\begin{array}{ll} \mbox{Dimensions of the deformed cube: } (\ell_1,\ell_2,\ell_3) & \ell_j > 0 \\ \mbox{Conservation of volume: } \ell_1\ell_2\ell_3 = 1 & \mbox{Traction strength: } \lambda \end{array}$

Symmetries of the problem Permutations of the sides

symmetry group S_3 .

Model independent treatment

General method, applied to the problem of the cube:

Bifurcation, reduction to kernel

Symmetry, multidimensional kernel

Fixed-point subspaces

Invariant theory

Equivariant singularities

Bifurcation

Model is an equation $\dot{x} = g(x, \lambda) \ x \in \mathbf{R}^n$. Equilibrium solutions satisfy $g(x_0, \lambda_0) = 0$. Stability is given by the sign of the eigenvalues of $D_x g(x_0, \lambda_0)$.

If all eigenvalues are non-zero, then, locally, $\exists ! x(\lambda) \quad x(\lambda_0) = x_0$ such that $g(x(\lambda), \lambda) \equiv 0$ and these are all the solutions of $g(x, \lambda) = 0$. (Implicit function theorem)

Without loss of generality, suppose $g(0, \lambda) = 0$.

Bifurcation

Model is an equation $\dot{x} = g(x, \lambda) \ x \in \mathbf{R}^n$, $g(0, \lambda) = 0$.

Bifurcation at $\lambda = 0$ implies zero is eigenvalue of $D_{x}g(0,0)$

 $\ker D_x g(0,0) \neq \{0\}$

Liapunov-Schmidt reduction problem is equivalent to

(Implicit function theorem)

 $\dot{x} = h(x, \lambda)$ $x \in \ker D_x g(0, 0)$ $h(0, \lambda) = 0$

Generically, dim ker $D_x g(0,0) = 1$.

Symmetry

Model is an equation $\dot{x} = g(x, \lambda) \ x \in \mathbb{R}^n$. $\gamma \in \mathbb{O}(n)$ is a symmetry of $x_0 \in \mathbb{R}^n$

$$\gamma x_0 = x_0$$

 $\gamma \in \mathbf{O}(n)$ is a symmetry of g

$$g(\gamma x, \lambda) = \gamma g(x, \lambda)$$

(g is γ -equivariant) If $\gamma x_0 = x_0$ and $D_x g(x_0, \lambda_0) = L$ then $\gamma L = L\gamma$.

If Lv = 0 then $L\gamma v = 0$.

Generically, in systems with symmetry, dim ker $D_x g(x_0, \lambda_0) > 1$.

Symmetry

Example: symmetries of an equilateral triangle D_3 acting on $R^2 \sim C$ by

$$\rho(z) = e^{2\pi i/3} z \qquad \kappa(z) = \overline{z}$$

 κ is a symmetry of $x \in \mathbf{R} \subset \mathbf{C}$. If $g(x, \lambda)$ is \mathbf{D}_3 -equivariant with $D_x g(0, 0) = L$ and if Lv = 0 with $v \neq 0$ then $L\rho v = 0$. Since $v \neq 0$ and ρv are linearly independent, then $L \equiv 0$, dim ker $D_x g(x_0, \lambda_0) = 2$. Fixed-point subspaces— spontaneous symmetry breaking $\Gamma \leq \mathbf{O}(n)$ group of symmetries γ of bifurcation problem $g(x, \lambda)$. $\Sigma \leq \Gamma$ subgroup of symmetries of an equilibrium $x_0 \in \mathbf{R}^n$ isotropy subgroup

All the equilibria with symmetry subgroup Σ lie in the:

Fixed-point subspace

$$\mathsf{Fix}(\Sigma) = \{x \in \mathbf{R}^n : \ \gamma x = x \quad \forall \gamma \in \Sigma\}$$

If
$$x \in Fix(\Sigma)$$
 then $g(x, \lambda) \in Fix(\Sigma)$.

Action of Γ on V is irreducible

if the only subspaces $W \leq V$

such that $\gamma w \in W \ \forall w \in W$, $\gamma \in \Gamma$

are $W = \{0\}$ and W = V.

Theorem (Equivariant branching lemma)

If the action of Γ on V is irreducible, and if $\Sigma \leq \Gamma$ is an isotropy subgroup with dim $Fix(\Sigma) = 1$, then, generically, for a Γ -equivariant bifurcation problem $g(x, \lambda)$, there is a unique branch with symmetry Σ that bifurcates from the trivial equilibrium at $\lambda = 0$.

Fixed-point subspaces and the cube

Symmetry group $\Gamma = \mathbf{S}_3$ acting on the surface $\{(\ell_1, \ell_2, \ell_3): \ell_j > 0 \quad \ell_1 \ell_2 \ell_3 = 1\} \subset \mathbf{R}^3$

 \mathbf{S}_3 is generated by:

 $P_3(\ell_1, \ell_2, \ell_3) = (\ell_2, \ell_3, \ell_1) \qquad P_2(\ell_1, \ell_2, \ell_3) = (\ell_2, \ell_1, \ell_3)$

action of \boldsymbol{S}_3 on the surface is isomorphic to \boldsymbol{D}_3 acting on $\boldsymbol{R}^2\sim\boldsymbol{C}$

$$\rho(z) = e^{2\pi i/3} z \approx P_3 \qquad \kappa(z) = \bar{z} \approx P_2$$

cube $\ell_1 = \ell_2 = \ell_3$ identified to origin (maximum symmetry)

dim Fix(Σ) = 1 for Σ = **Z**₂ = { κ , *Id*}.

A branch with symmetry κ : rods or plates.

Three symmetric copies of the branch.

are they rods or are they plates?

Invariant functions

 $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ is Γ -invariant if

 $f(\gamma x) = f(x) \qquad \forall x \in \mathbf{R}^n \qquad \forall \gamma \in \Gamma$

Example: **D**₃-invariant functions

$$u(x, y) = x^{2} + y^{2}$$
 $v(x, y) = x^{3} - 3xy^{2}$

in complex notation

$$u(z) = z\overline{z}$$
 $v(z) = \operatorname{Re}(z^3)$

Every D_3 -invariant C^{∞} function can be written in the form

$$f(x,y) = p(u(x,y),v(x,y))$$

where p is a C^{∞} function of 2 variables. (by the Hilbert-Weyl-Schwarz theorem) Equivariant vector fields

 $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is Γ -equivariant if

$$F(\gamma x) = \gamma F(x) \qquad \forall x \in \mathbf{R}^n \qquad \forall \gamma \in \Gamma$$

If $f : \mathbf{R}^n \longrightarrow \mathbf{R}$ is Γ -invariant and if $F : \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is Γ -equivariant then f(x)F(x) is also Γ -equivariant.

Equivariant vector fields

Example: **D**₃-equivariant vector fields

$$X(x,y) = (x,y)$$
 $Y(x,y) = (x^2 - y^2, -2xy)$

in complex notation

$$X(z) = z \qquad \qquad Y(z) = (\bar{z})^2$$

Every $\boldsymbol{D}_3\text{-equivariant}$ vector field of class \mathcal{C}^∞ can be written in the form

$$F(x,y) = p(u(x,y), v(x,y))X(x,y) + q(u(x,y), v(x,y))Y(x,y)$$

where p and q are C^{∞} functions of 2 variables.

(by Poénaru's theorem)

D₃-equivariant vector fields generated by:

Invariant functions

$$u(x, y) = x^{2} + y^{2}$$
 $v(x, y) = x^{3} - 3xy^{2}$

Equivariant vector fields

$$X(x,y) = (x,y)$$
 $Y(x,y) = (x^2 - y^2, -2xy)$

 $\begin{array}{ccc} \mathbf{D}_{3}\text{-equivariant Taylor expansions:} \\ \text{degree} & \text{term} \\ 1 & X \\ 2 & Y \\ 3 & uX \\ 4 & uY & vX \\ 5 & u^{2}X & vY \end{array}$

Consequence

Theorem

The rod and plate solutions that bifurcate from the cube are unstable.

Proof

Model is an equation $(\dot{x}, \dot{y}) = g(x, y, \lambda)$ $(x, y) \in \mathbf{R}^2$ with $g \mathbf{D}_3$ -equivariant.

$$g(x, y, \lambda) = p(u, v, \lambda) \begin{pmatrix} x \\ y \end{pmatrix} + q(u, v, \lambda) \begin{pmatrix} x^2 - y^2 \\ -2xy \end{pmatrix}$$

Bifurcating solutions are in $Fix(\mathbf{Z}_2) = \{(x, 0)\}$, hence they satisfy

$$xp + x^2q = 0$$

and if $x \neq 0$ then

$$p + xq = 0$$

Proof of instability

Write
$$p_x = \frac{\partial p}{\partial x} = 2x \frac{\partial p}{\partial u} + 3(x^2 - y^2) \frac{\partial p}{\partial v}$$

and similarly for q_x , p_y , q_y .
Then $D_{(x,y)}g(x, y, \lambda)$ is:
 $\begin{pmatrix} xp_x + p + (x^2 - y^2)q_x + 2xq & xp_y + (x^2 - y^2)q_y - 2yq \\ yp_x - 2xyq_x - 2yq & ypy + p - 2xyq_y - 2xq \end{pmatrix}$
In Fix(\mathbf{Z}_2) = { $(x, 0, \lambda)$ }, $D_{(x,y)}g(x, 0, \lambda)$ is:
 $\begin{pmatrix} p + 2xq + xp_x + x^2q_x & xp_y + x^2q_y \\ 0 & p - 2xq \end{pmatrix}$

Eigenvalues:

$$p + 2xq + xp_x + x^2q_x = p + 2xq + O(x^3)$$
 $p - 2xq$

Proof of instability

Eigenvalues of
$$D_{(x,y)}g(x,0,\lambda)$$
:
 $p + 2xq + O(x^3)$ $p - 2xq$
In Fix(\mathbf{Z}_2) = {(x,0)} solutions of $g = 0$ satisfy
 $p + xq = 0$

Hence the eigenvalues are

$$p + 2xq + O(x^3) = xq + O(x^3)$$
 $p - 2xq = -3xq$

that have opposite signs for small $x \neq 0$ — the branch is unstable.

Equivariant singularities

How to use singularity theory to find stable branches of $g(x, y, \lambda) = pX + qY$:

- Find a more degenerate problem nearby (organising centre)
 Suppose p(0,0,0) = 0 and also q(0,0,0) = 0.
- Perturb the degenerate problem generically (within the class of D₃-equivariant bifurcations) and see what happens.

If p(0,0,0) = 0 = q(0,0,0), then, up to changes of coordinates that preserve the **D**₃ symmetry, g is like: $h(z,\lambda) = (u - \lambda)z + (u + mv)\overline{z}^2$

Bifurcation diagrams

Organising centre

$$h(z,\lambda) = (u-\lambda)z + (u+mv)\overline{z}^2$$

solid line — stable

dashed line — unstable

Bifurcation diagrams

solid line — stable

References

- M. Golubitsky, I.N. Stewart, W. Schaeffer, Singularities and Groups in Bifurcation Theory, vol II Springer-Verlag (1984)
- M. Golubitsky, I.N. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, Birkäuser