Singularities with symmetry

School on Singularity Theory

Mini-course on Applications of Singularities

Isabel S. Labouriau

Centro de Matemática da Universidade do Porto - Portugal

São Carlos, SP, Brasil
17 - 22 July 2016

Deformation of an elastic cube under uniform traction

Dimensions of the deformed cube: $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$
Conservation of volume: $\ell_{1} \ell_{2} \ell_{3}=1$
Traction strength: λ

Symmetric deformations

Symmetries of the problem
Permutations of the sides
symmetry group \mathbf{S}_{3}.

Model independent treatment

General method, applied to the problem of the cube:

Bifurcation, reduction to kernel

Symmetry, multidimensional kernel

Fixed-point subspaces

Invariant theory

Equivariant singularities

Bifurcation

Model is an equation $\dot{x}=g(x, \lambda) x \in \mathbf{R}^{n}$.
Equilibrium solutions satisfy $g\left(x_{0}, \lambda_{0}\right)=0$.
Stability is given by the sign of the eigenvalues of $D_{x} g\left(x_{0}, \lambda_{0}\right)$.
If all eigenvalues are non-zero, then, locally,
$\exists!x(\lambda) \quad x\left(\lambda_{0}\right)=x_{0} \quad$ such that $g(x(\lambda), \lambda) \equiv 0$
and these are all the solutions of $g(x, \lambda)=0$.
(Implicit function theorem)
Without loss of generality, suppose $g(0, \lambda)=0$.

Bifurcation

Model is an equation $\dot{x}=g(x, \lambda) x \in \mathbf{R}^{n}, g(0, \lambda)=0$.
Bifurcation at $\lambda=0$ implies zero is eigenvalue of $D_{\times} g(0,0)$
ker $D_{\times} g(0,0) \neq\{0\}$
Liapunov-Schmidt reduction
(Implicit function theorem) problem is equivalent to

$$
\dot{x}=h(x, \lambda) \quad x \in \operatorname{ker} D_{x} g(0,0) \quad h(0, \lambda)=0
$$

Generically, dim ker $D_{\times} g(0,0)=1$.

Symmetry

Model is an equation $\dot{x}=g(x, \lambda) x \in \mathbf{R}^{n}$.
$\gamma \in \mathbf{O}(n)$ is a symmetry of $x_{0} \in \mathbf{R}^{n}$

$$
\gamma x_{0}=x_{0}
$$

$\gamma \in \mathbf{O}(n)$ is a symmetry of g

$$
g(\gamma x, \lambda)=\gamma g(x, \lambda)
$$

(g is γ-equivariant)
If $\gamma x_{0}=x_{0}$ and $D_{\times} g\left(x_{0}, \lambda_{0}\right)=L$ then $\gamma L=L \gamma$.
If $L v=0$ then $L \gamma v=0$.
Generically, in systems with symmetry, dim $\operatorname{ker} D_{\times} g\left(x_{0}, \lambda_{0}\right)>1$.

Symmetry

Example: symmetries of an equilateral triangle \mathbf{D}_{3} acting on $\mathbf{R}^{2} \sim \mathbf{C}$ by

$$
\rho(z)=\mathrm{e}^{2 \pi i / 3} z \quad \kappa(z)=\bar{z}
$$

κ is a symmetry of $x \in \mathbf{R} \subset \mathbf{C}$.
If $g(x, \lambda)$ is \mathbf{D}_{3}-equivariant with $D_{\times} g(0,0)=L$ and if $L v=0$ with $v \neq 0$ then $L \rho v=0$.
Since $v \neq 0$ and ρv are linearly independent, then $L \equiv 0$, dim ker $D_{x} g\left(x_{0}, \lambda_{0}\right)=2$.

Fixed-point subspaces- spontaneous symmetry breaking

$\Gamma \leq \mathbf{O}(n)$ group of symmetries γ of bifurcation problem $g(x, \lambda)$.
$\Sigma \leq \Gamma$ subgroup of symmetries of an equilibrium $x_{0} \in \mathbf{R}^{n}$
isotropy subgroup
All the equilibria with symmetry subgroup Σ lie in the:
Fixed-point subspace
$\operatorname{Fix}(\Sigma)=\left\{x \in \mathbf{R}^{n}: \gamma x=x \quad \forall \gamma \in \Sigma\right\}$
If $x \in \operatorname{Fix}(\Sigma)$ then $g(x, \lambda) \in \operatorname{Fix}(\Sigma)$.
Action of Γ on V is irreducible
if the only subspaces $W \leq V$
such that $\gamma w \in W \forall w \in W, \gamma \in \Gamma$
are $W=\{0\}$ and $W=V$.
Theorem (Equivariant branching lemma)
If the action of Γ on V is irreducible, and if $\Sigma \leq \Gamma$ is an isotropy subgroup with $\operatorname{dim} \operatorname{Fix}(\Sigma)=1$, then, generically, for a Γ-equivariant bifurcation problem $g(x, \lambda)$, there is a unique branch with symmetry Σ that bifurcates from the trivial equilibrium at $\lambda=0$.

Fixed-point subspaces and the cube

Symmetry group $\Gamma=\mathbf{S}_{3}$
acting on the surface $\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right): \ell_{j}>0 \quad \ell_{1} \ell_{2} \ell_{3}=1\right\} \subset \mathbf{R}^{3}$
\mathbf{S}_{3} is generated by:

$$
P_{3}\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=\left(\ell_{2}, \ell_{3}, \ell_{1}\right) \quad P_{2}\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=\left(\ell_{2}, \ell_{1}, \ell_{3}\right)
$$

action of \mathbf{S}_{3} on the surface is isomorphic to \mathbf{D}_{3} acting on $\mathbf{R}^{2} \sim \mathbf{C}$

$$
\rho(z)=\mathrm{e}^{2 \pi i / 3} z \approx P_{3} \quad \kappa(z)=\bar{z} \approx P_{2}
$$

cube $\ell_{1}=\ell_{2}=\ell_{3}$ identified to origin (maximum symmetry) $\operatorname{dim} \operatorname{Fix}(\Sigma)=1$ for $\Sigma=\mathbf{Z}_{2}=\{\kappa, / d\}$.

A branch with symmetry κ : rods or plates.
Three symmetric copies of the branch.

Invariant functions

$f: \mathbf{R}^{n} \longrightarrow \mathbf{R}$ is Γ-invariant if

$$
f(\gamma x)=f(x) \quad \forall x \in \mathbf{R}^{n} \quad \forall \gamma \in \Gamma
$$

Example: \mathbf{D}_{3}-invariant functions

$$
u(x, y)=x^{2}+y^{2} \quad v(x, y)=x^{3}-3 x y^{2}
$$

in complex notation

$$
u(z)=z \bar{z} \quad v(z)=\operatorname{Re}\left(z^{3}\right)
$$

Every \mathbf{D}_{3}-invariant C^{∞} function can be written in the form

$$
f(x, y)=p(u(x, y), v(x, y))
$$

where p is a C^{∞} function of 2 variables.
(by the Hilbert-Weyl-Schwarz theorem)

Equivariant vector fields

$F: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$ is Γ-equivariant if

$$
F(\gamma x)=\gamma F(x) \quad \forall x \in \mathbf{R}^{n} \quad \forall \gamma \in \Gamma
$$

If $f: \mathbf{R}^{n} \longrightarrow \mathbf{R}$ is Γ-invariant

$$
\text { and if } F: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \text { is } \Gamma \text {-equivariant }
$$ then $f(x) F(x)$ is also Γ-equivariant.

Equivariant vector fields

Example: \mathbf{D}_{3}-equivariant vector fields

$$
X(x, y)=(x, y) \quad Y(x, y)=\left(x^{2}-y^{2},-2 x y\right)
$$

in complex notation

$$
X(z)=z \quad Y(z)=(\bar{z})^{2}
$$

Every \mathbf{D}_{3}-equivariant vector field of class C^{∞} can be written in the form

$$
F(x, y)=p(u(x, y), v(x, y)) X(x, y)+q(u(x, y), v(x, y)) Y(x, y)
$$

where p and q are C^{∞} functions of 2 variables.
(by Poénaru's theorem)

D_{3}-equivariant vector fields generated by:

Invariant functions

$$
u(x, y)=x^{2}+y^{2} \quad v(x, y)=x^{3}-3 x y^{2}
$$

Equivariant vector fields

$$
X(x, y)=(x, y) \quad Y(x, y)=\left(x^{2}-y^{2},-2 x y\right)
$$

\mathbf{D}_{3}-equivariant Taylor expansions:

degree	term	
1	X	
2	Y	
3	$u X$	
4	$u Y$	$v X$
5	$u^{2} X$	$v Y$

Consequence

Theorem
The rod and plate solutions that bifurcate from the cube are unstable.

Proof
Model is an equation $(\dot{x}, \dot{y})=g(x, y, \lambda)$
$(x, y) \in \mathbf{R}^{2}$ with $g \mathbf{D}_{3}$-equivariant.

$$
g(x, y, \lambda)=p(u, v, \lambda)\binom{x}{y}+q(u, v, \lambda)\binom{x^{2}-y^{2}}{-2 x y}
$$

Bifurcating solutions are in $\operatorname{Fix}\left(\mathbf{Z}_{2}\right)=\{(x, 0)\}$, hence they satisfy

$$
x p+x^{2} q=0
$$

and if $x \neq 0$ then

$$
p+x q=0
$$

Proof of instability

Write $p_{x}=\frac{\partial p}{\partial x}=2 x \frac{\partial p}{\partial u}+3\left(x^{2}-y^{2}\right) \frac{\partial p}{\partial v}$
and similarly for q_{x}, p_{y}, q_{y}.
Then $D_{(x, y)} g(x, y, \lambda)$ is:

$$
\left(\begin{array}{ll}
x p_{x}+p+\left(x^{2}-y^{2}\right) q_{x}+2 x q & x p_{y}+\left(x^{2}-y^{2}\right) q_{y}-2 y q \\
y p_{x}-2 x y q_{x}-2 y q & y p y+p-2 x y q_{y}-2 x q
\end{array}\right)
$$

In $\operatorname{Fix}\left(\mathbf{Z}_{2}\right)=\{(x, 0, \lambda)\}, D_{(x, y)} g(x, 0, \lambda)$ is:

$$
\left(\begin{array}{cl}
p+2 x q+x p_{x}+x^{2} q_{x} & x p_{y}+x^{2} q_{y} \\
0 & p-2 x q
\end{array}\right)
$$

Eigenvalues:
$p+2 x q+x p_{x}+x^{2} q_{x}=p+2 x q+O\left(x^{3}\right) \quad p-2 x q$

Proof of instability

Eigenvalues of $D_{(x, y)} g(x, 0, \lambda)$:
$p+2 x q+O\left(x^{3}\right)$

$$
p-2 x q
$$

In $\operatorname{Fix}\left(\mathbf{Z}_{2}\right)=\{(x, 0)\}$ solutions of $g=0$ satisfy

$$
p+x q=0
$$

Hence the eigenvalues are
$p+2 x q+O\left(x^{3}\right)=x q+O\left(x^{3}\right) \quad p-2 x q=-3 x q$
that have opposite signs for small $x \neq 0$ - the branch is unstable.

Equivariant singularities

How to use singularity theory to find stable branches of $g(x, y, \lambda)=p X+q Y$:

- Find a more degenerate problem nearby (organising centre) Suppose $p(0,0,0)=0$ and also $q(0,0,0)=0$.
- Perturb the degenerate problem generically (within the class of \mathbf{D}_{3}-equivariant bifurcations) and see what happens.
If $p(0,0,0)=0=q(0,0,0)$, then, up to changes of coordinates that preserve the \mathbf{D}_{3} symmetry, g is like:
$h(z, \lambda)=(u-\lambda) z+(u+m v) \bar{z}^{2}$

Bifurcation diagrams

Organising centre

$$
h(z, \lambda)=(u-\lambda) z+(u+m v) \bar{z}^{2}
$$

solid line - stable
dashed line - unstable

Bifurcation diagrams

Generic perturbation
$h(z, \lambda)=(u-\lambda) z+(u+m v+\alpha) \bar{z}^{2}$
$\alpha>0$

solid line - stable

$$
\begin{aligned}
& \alpha<0 \\
& m>0
\end{aligned}
$$

dashed line - unstable

References

- M. Golubitsky, I.N. Stewart, W. Schaeffer, Singularities and Groups in Bifurcation Theory, vol II Springer-Verlag (1984)
- M. Golubitsky, I.N. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, Birkäuser

