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Affine Differential Geometry

The Affine Differential Geometry of hypersurfaces is classical:
Tzitéica (1908), Blaschke, Radon, Pick, Berwald, Thomsen
(1916-1923), Cartan (1924), Kubota, Süss, Su Buchin, Nakajima
(≈ 1930).

For higher codimensions, there are much less theory:
Burstin-Mayer (1927), Weise (1939), Klingenberg (1951),
Nomizu-Vrancken (1993).

References:

I Buchin, S.: Affine Differential Geometry, 1983.

I Nomizu, K., Sasaki, T.: Affine Differential Geometry, 1994.
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Tzitéica (1908), Blaschke, Radon, Pick, Berwald, Thomsen
(1916-1923), Cartan (1924), Kubota, Süss, Su Buchin, Nakajima
(≈ 1930).

For higher codimensions, there are much less theory:
Burstin-Mayer (1927), Weise (1939), Klingenberg (1951),
Nomizu-Vrancken (1993).

References:

I Buchin, S.: Affine Differential Geometry, 1983.

I Nomizu, K., Sasaki, T.: Affine Differential Geometry, 1994.



Codimension 2 submanifolds contained in a hypersurface

We shall discuss here the case of codimension 2 submanifolds N
contained in hypersurface M.

In fact, we need only the hypersurface M around the submanifold
N, or equivalently, the submanifold N together with a tangent
space (to M) at each point.

We can also think of submanifolds N together with a distinguished
transversal vector field ξ (tangent to M).
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Darboux direction

Let γ ⊂ M be a smooth curve contained in a surface M ⊂ R3.

Assume that the osculating plane of γ does not coincide with the
tangent plane of M. There exists a unique direction ξ tangent to
M and transversal to γ such that DX ξ is tangent to M, for any X
tangent to γ. This direction is called the (osculating) Darboux
direction of γ ⊂ M.
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Affine metric and affine normal plane

There exists a unique vector field ξ(t) in the Darboux direction
which is parallel, i.e., ξ′(t) is tangent to γ(t), t ∈ I .

Parameterize γ such that

[γ′(t), γ′′(t), ξ(t)] = 1.

Then γ′′′(t) is tangent to M.

The metric g = dt is called affine metric and the plane bundle
{γ′′(t), ξ(t)} is called affine normal plane bundle of γ ⊂ M.

The Darboux-Frenet equations for the frame {γ′(t), γ′′(t), ξ(t)}
are 

(γ′)′ = γ′′,
(γ′′)′ = −ργ′ + τξ,

ξ′ = −σγ′.
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A parallel basis for the affine normal plane

Choose λ(t) such that λ′(t) = −τ(t). Observe that λ may not be
globally defined for closed curves. Define

η(t) = γ′′(t) + λ(t)ξ(t).



New Darboux-Frenet equations

We have
η′(t) = −µ(t)γ′(t),

where µ(t) = ρ(t) + λ(t)σ(t).

The Darboux-Frenet equations for the frame {γ′(t), η(t), ξ(t)} are
γ′′ = η − λξ,
η′ = −µγ′,
ξ′ = −σγ′.
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Envelope of Tangent Planes

The Envelope of Tangent Planes of M along γ is parameterized by

φ(t, u) = γ(t) + uξ(t), t ∈ I , u ∈ R,

where ξ(t) is the Darboux direction. It is also called Osculating
Developable Surface.

The Envelope of Tangent Planes reduces to a point if and only if
σ = −1, constant, and ξ = γ (centro-affine geometry). This case
is of particular interest in Computer Vision, since the curves are
silhouette curves or visual contours of an object. They are also
called non-brightening curves (K. Saji).
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Singularities of the Envelope of Tangent Planes

1) If u 6= σ−1(t), φ is smooth.

2) If σ(t) 6= 0, u = σ−1(t) and σ′(t) 6= 0, then φ is locally
diffeomorphic to a cuspidal edge.

3) If σ(t) 6= 0, u = σ−1(t), σ′(t) = 0 and σ′′(t) 6= 0, then φ is
locally diffeomorphic to a swallowtail.
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Affine Focal Sets

The equation of the affine normal plane at γ(t) is F (x , t) = 0,
where

F (x , t) = [x − γ(t), η(t), ξ(t)]

The envelope of the affine normal planes is the set

B = {x ∈ R3| F = Ft = 0, for some t ∈ I}.

Observe that B is also the bifurcation set of the affine distance
function

∆(x , t) =
[
x − γ(t), γ′(t), ξ(t)

]
.

The set B is also called affine focal set or evolute of the immersion
γ ⊂ M.
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The affine focal set is a developable surface

We have that
B = {l(t)| t ∈ I},

where l(t) denote the line connecting

O(t) = γ(t) + σ−1(t)ξ(t), Q(t) = γ(t) + µ−1(t)η(t).



Singularities of the Affine Focal Set

The equation of the affine normal plane is

F (x , t) = [x − γ(t), η(t), ξ(t)] .

Then F = Ft = 0 if and only if x = γ(t) + uη(t) + vξ(t) and

uµ+ vσ = 1.

If F = Ft = 0, then
Ftt = uµ′ + vσ′.

If F = Ft = Ftt = 0 then

Fttt = uµ′′ + vσ′′.

Finally if F = Ft = Ftt = Fttt = 0, then

Ftttt = uµ′′′ + vσ′′′.



Singularities of the Affine Focal Set

Theorem
Let B be the affine focal set of γ ⊂ M. Each point of B at γ(t)
belongs to the line

uµ+ vσ = 1.

Then

1. B is smooth if uµ′ + vσ′ 6= 0.

2. B is locally diffeomorphic to a cuspidal edge if uµ′ + vσ′ = 0
and uµ′′ + vσ′′ 6= 0.

3. B is locally diffeomorphic to a swallowtail if uµ′′ + vσ′′ = 0
and uµ′′′ + vσ′′′ 6= 0.



Immersions whose affine focal set is a single line

The affine focal set B reduces to a single line if and only if σ and µ
are constants.

Assuming σ = −1, we obtain ξ = γ and so

γ′′′(t) = −ρ(t)γ′(t) + τ(t)γ(t).

The condition µ′ = 0 can be written as τ = −ρ′. Thus

γ′′′(t) = − (ρ(t)γ(t))′ ,

or equivalently,
γ′′(t) = −ρ(t)γ(t) + Q,

for some constant vector Q.

Assume Q = (0, 0, 1) and write γ = (ψ, z). Then

ψ′′(t) = −ρ(t)ψ(t); z ′′(t) = −ρ(t)z(t) + 1.
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Immersions whose affine focal set B is a single line

Theorem: (C., M.J.Saia, L.Sánchez) For a planar curve Ψ, denote
ψ = Ψ′ and z(t) = [Ψ(t)− O, ψ(t)] (the affine distance or
support function of Ψ with respect to an origin O). Then the
affine focal set of the spacial curve

γ(t) = (ψ(t), z(t))

is a single line. Conversely, any curve γ ⊂ M whose affine focal set
is a single line is obtained by this construction.

Since Ψ′′′ = −ρΨ′, ρ is the affine curvature of the planar curve Ψ.
Moreover, ρ′ + τ = 0 and so ρ′ = 0 if and only if γ(t) is flat.

Corollary: Closed curves contained in surfaces whose affine focal
set is a single line have at least six flat points.
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A projectively invariant six vertex theorem

In the centro-affine case (σ = −1, ξ = γ), write

γ′′′(t) = −ρ(t)γ′(t) + τ(t)γ(t),

h(t) = ρ′(t) + 2τ(t).

The cubic form h(t)dt3 is projectively invariant and h(t)1/3dt is
called the projective arc-length.

If we represent γ by a planar curve, τ = 0 and ρ is the affine
curvature of γ. We conclude that any closed curve admit at least
six points where h(t) = 0. Geometrically, this means that γ has
higher order contact with a quadratic cone at least six times.
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Darboux direction

For Nn ⊂ Mn+1 ⊂ Rn+2, take {X1, ...,Xn} a local frame of N, ξ
tangent to M and transversal to N and η transversal to M. Write

DXY = ∇XY + h1(X ,Y )ξ + h2(X ,Y )η.

We say that the immersion is non-degenerate if the n × n matrix(
h2(Xi ,Xj)

)
is non-degenerate. This condition is independent of

the local frame of N, ξ and η.

Under the non-degeneracy condition, there exists a unique direction
ξ tangent to M such that DX ξ is tangent to M, for any X ∈ TN.

We shall call this direction the Darboux direction of N ⊂ M.
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Envelope of Tangent Spaces

Let {X1, ..,Xn} be a frame for TN. The tangent space of M at
p ∈ N is given by F = 0, where

F (x) = [x − p,X1, ...,Xn, ξ] .

The Envelope of Tangent Spaces of N ⊂ M is given by

ETN(p, u) = p + uξ(p), p ∈ N, u ∈ R.

Write
DX ξ = −SξX + τ11 (X )ξ

Then ETN(p, u) is smooth if u 6= σ−1, for some non-zero
eigenvalue σ of the shape operator Sξ.
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Envelope of Tangent Spaces- Simple Singularities

We show through examples that any simple singularity can appear
in ETN . We recall that any simple singularity is R-equivalent to
Ak , k ≥ 2, Dk , k ≥ 4, E6, E7 or E8. (*)

(*) Equiaffine Darboux frames for codimension 2 submanifolds contained in

hypersurfaces, M.Craizer, M.J.Saia, L.Sánchez, J.Math.Soc.Japan, 2016.

Consider M ⊂ Rn+2 given by the graph of f (t, y), t = (t1, ..., tn).
We shall assume that f = fti = fy = 0 at the origin, for any
1 ≤ i ≤ n. Let N be the submanifold y = g(t) and assume that
gti = 0 at t = 0, i.e., the tangent space of N is generated by {ei},
1 ≤ i ≤ n.
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(1) Let

f (t, y) =
t2

2
+

1

6
t3 +

σ

2
t2y , g(t) = 0,

Then, close to (0, σ−1, 0),

F (t, x1, x2 + σ−1, x3) = −1

3
t3 +

σ

2
t2x2 + (

1

2
t2 + t)x1 − x3,

which is a versal unfolding of an A2 point.

(2) Let

f (t, y) =
t2

2
+

1

24
t4 +

σ

2
t2y , g(t) = 0,

Close to (0, σ−1, 0),

F (t, x1, x2 + σ−1, x3) = −1

8
t4 +

σ

2
t2x2 + (

1

6
t3 + t)x1 − x3,

which is a versal unfolding of an A3 point.



(3) For general k ≥ 3, let σ = 1, t = (t1, ..., tk−2), i.e., n = k − 2,

f (t, y) =
1

2
|t|2 +

1

2
t21y +

k−2∑
j=2

t j+1
1 tj ,

g(t) = −tk−11 −
k−2∑
j=2

(j + 1)t j−11 tj

Then, close to (0, ..., 1, 0),

F = tk+1
1 − 1

2

k−2∑
j=2

t2j +x1(t1− tk1 )+
k−2∑
j=2

xj(tj + t j+1
1 )+

1

2
t21xk−1−xk .

which is a versal unfolding of an Ak point.



(4) For a general k ≥ 4, take

f =
1

2
|t|2 +

y

2
(t21 + t22 ) + tk−11 + t1t

2
2 +

k−2∑
j=3

t j1tj +
k−2∑
j=3

t j−21 t22 tj

and g = −
∑k−2

j=3 jtj t
j−2
1 . Long but straightforward calculations

show that, close to (0, ..., 1, 0),

F = (2− k)tk−11 − 2t1t
2
2 −

1

2

k−2∑
j=3

t2j − xk +
1

2
(t21 + t22 )xk−1

+
k−2∑
j=3

xj(t
j
1 + t j−21 t22 + tj) + x2

t2 + 2t1t2 +
k−2∑
j=3

(2− j)t j−21 t2tj


+x1

t1 + (k − 1)tk−21 + t22 +
k−2∑
j=3

(j − 2)t j−31 t22 tj

 ,

which is a versal unfolding of a Dk point.



(5) Consider

f =
1

2
|t|2+

1

2
(t21+t22 )y+t31+t42+t1t2t3+2t1t2t3y+t1t

2
2 t4+3t1t

2
2 t4y

and g = 0. Then

F = −2t31 − 3t42 −
1

2
(t23 + t24 )− x6 + x4(t1t

2
2 + t4) + x3(t1t2 + t3)

+x1
(
t1 + 3t21 + t22 t4 + t2t3

)
+ x2

(
t2 + 4t32 + t1t3 + 2t1t2t4

)
+x5

(
1

2
(t21 + t22 ) + 2t1t2t3 + 3t1t

2
2 t4

)
which is a versal unfolding of an E6 point.
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Affine metric associated with a vector field

Let ξ be a fixed vector field in the osculating Darboux direction.
For a local frame {X1, ...,Xn} of TN and X ,Y ∈ TN define

G (X ,Y ) = [X1, ..,Xn,DXY , ξ].

Then

g(X ,Y ) =
G (X ,Y )

detG (X ,Y )
1

n+2

is a non-degenerate metric in N, called affine metric (*).

(*) Luis F. Sánchez: Surfaces in 4-space from the affine differential viewpoint,

Ph.D. thesis, 2014. Advisors: M.J.Saia and J.J.Nuño-Ballesteros.



Affine normal plane bundle

There exists a vector field η transversal to M such that

1. For any X ∈ TN, DXη is tangent to M.

2. For any g -orthonormal frame {X1, ...,Xn} of TN.

[X1, ....,Xn, η, ξ] = 1.

The transversal vector field η satisfying the above conditions is not
unique, any vector field of the form

η̄ = η + λξ

satisfies the same conditions. But, up to these transformations, it
is unique. The transversal bundle S{ξ, η} is called the affine
normal plane bundle.
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Semi-umbilic immersions

For ν in the affine normal plane bundle and X ∈ TN write

DXν = −SνX +∇⊥Xν,

where SνX is tangent to N and ∇⊥Xν belongs to the affine normal
plane. The linear map Sν is called shape operator and ∇⊥Xν is
called affine normal connection. The immersion N ⊂ M is
semi-umbilic (umbilic) if Sν = λId , for some (any) vector field ν in
the affine normal plane bundle.

Proposition: (J.J.Nuño-Ballesteros, L.Sánchez) If N ⊂ M is
semi-umbilic at p ∈ N, the shape operators Sν at p commute. The
converse holds if n = 2.
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Transon planes

Consider a point p in a surface M and a tangent vector T ∈ TpM.
A very classical result of A. Transon (1841) says that the affine
vectors at p of all sections of M containing T belongs to a plane
A(p,T ). This plane is called the Transon plane.

This result can be generalized to hypersurfaces M by considering
sections containing a hyperplane H ⊂ TpM.

Theorem: (*) Consider and immersion N ⊂ M and denote by H
the tangent space of N at p. The affine normal plane A(p, ξ)
coincides with the Transon plane A(p,H) if and only if ξ is parallel.

(*) Equiaffine Darboux frames for codimension 2 submanifolds contained in

hypersurfaces, M.Craizer, M.J.Saia, L.Sánchez, J.Math.Soc.Japan, 2016.
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Cubic forms and the apolarity condition

The cubic forms are defined as

C 1(X ,Y ,Z ) = (∇Xh
1)(Y ,Z ) + τ11 (X )h1(Y ,Z ) + τ12 h

2(Y ,Z )
C 2(X ,Y ,Z ) = (∇Xh

2)(Y ,Z ) + τ21 (X )h1(Y ,Z ) + τ22 h
2(Y ,Z )

The cubic forms are symmetric in X ,Y ,Z .

The cubic form C 2 is apolar with respect to h2 if

trh2C
2(X , ·, ·) = 0

for any X ∈ TN.

Proposition: The vector field ξ is parallel if and only if the cubic
form C 2 is apolar with respect to h2.
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The Laplacian operator

Let φ : U → Rn+2 be a parameterization of N and denote by ∆
the Laplacian operator with respect to the metric g .

Proposition: ∆φ belongs to the affine normal plane if and only if
the Darboux vector field is parallel.

Sketch of proof: Write

DXφ∗Y − φ∗(∇̂XY ) = φ∗(K (X ,Y )) + h1(X ,Y )ξ + h2(X ,Y )η,

where K (X ,Y ) = ∇XY − ∇̂XY . The apolarity condition can be
stated as trg (K ) = 0. So

∆φ = (trgh
1)ξ + nη.
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Affine normal plane bundle- Discussion

When there exists a parallel Darboux vector field ξ, the affine
metric and the affine normal plane bundle satisfy many properties
similar to the codimension 1 case. Thus it seems to be a good
choice of ξ.

Nevertheless, a parallel Darboux vector field may not exist (C.,
M.J.Saia, L.Sánchez, 2015). In this case it seems also reasonable
to choose other transversal plane bundles, like the Transon planes.

From the point of view of Affine Focal Sets, the right choice is the
affine normal plane bundle.
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Affine distance to M along N

Let φ : U → Rn+2 be a parameterization of N. Define
F : U × Rn+2 → R by

F (t, x) = [X1(t), ...,Xn(t), ξ(t), x − φ(t)] ,

where Xi (t) = φti (t).

The singular set of F is defined by

{x ∈ Rn+2| Ft1 = ... = Ftn = 0}.

Proposition: The singular set of F coincides with the affine
normal plane at φ(t).
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Affine Focal Set of the immersion N ⊂ M

The bifurcation set of F is defined by

B = {x ∈ Rn+2| det(DttF ) = 0}.

where DttF denotes the hessian matrix of F (·, x). The set B is
also called the affine focal set of the immersion N ⊂ M.

Proposition: If the immersion is semi-umbilic at a point, the
affine focal set consists of n lines at this point.



Affine Focal Set of the immersion N ⊂ M

The bifurcation set of F is defined by

B = {x ∈ Rn+2| det(DttF ) = 0}.

where DttF denotes the hessian matrix of F (·, x). The set B is
also called the affine focal set of the immersion N ⊂ M.

Proposition: If the immersion is semi-umbilic at a point, the
affine focal set consists of n lines at this point.



Example: Product of two curves
Let α(u) and β(v) be planar curves parameterized by affine
arc-length and consider φ : I × J → R4 given by

φ(u, v) = (α(u), β(v)) .

Choose
ξ =

(
α′′(u), β′′(v)

)
as a parallel Darboux vector field and consider

ξ1 =
(
α′′(u), 0

)
; ξ2 =

(
0, β′′(v)

)
as a parallel basis for the affine normal plane bundle. Then

B = {x = φ+ rξ1 + sξ2| s = k(α)−1 or r = k(β)−1},

where k denotes affine curvature. At a point φ(u, v), B consists of
two concurrent lines. Globally,

B = E (α)× R2 ∪ R2 × E (β).
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Hyperplanar Submanifolds

If N is contained in a hyperplane H, we may choose ξ in the
Darboux direction with a constant component in fixed direction
transversal to H. This ξ is a parallel Darboux vector field. With
this choice of ξ, g coincides with the Blaschke metric of N ⊂ H.

Proposition: The affine Blaschke normal η of N ⊂ H belongs to
the affine normal plane.

Corollary 1: η is umbilic if and only if N ⊂ H is an affine sphere.

Corollary 2: N ⊂ M is umbilic if and only if N ⊂ H is an affine
sphere and the envelope of tangent spaces of N ⊂ M is a cone.
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Affine Focal Set- Simple Singularities

It is shown in (*) that all simple singularities appear for the affine
focal set of hypersurfaces. Thus they also appear for the affine
focal set of N ⊂ M ⊂ Rn+2.

(*) D.Davis- Thesis- University of Liverpool, 2008



Visual contour submanifolds

Suppose all tangent planes along N meet at a point O. Taking

ξ(p) = φ(p)− O,

we obtain DX ξ = X . So ξ is parallel and S1 = −Id .

Proposition: N ⊂ M is a visual contour if and only if there exists
a parallel Darboux vector field that is also umbilic.

This class of immersions is an object of study of the centro-affine
differential geometry of codimension 2 submanifolds.
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Submanifolds contained in hyperquadrics

If M is a hyperquadric and N ⊂ M is arbitrary, take ξ h-orthogonal
to TN satisfying h(ξ, ξ) = 1, where h is the Blaschke metric of M.
Then ξ is a parallel Darboux vector field. With this ξ, g coincides
with the restriction to N of the Blaschke metric of M.

Proposition: (J.J.Nuño-Ballesteros-M.J.Saia-L.Sánchez) The affine
Blaschke normal η = φ− Q belongs to the affine normal plane, is
parallel and umbilic.

Proposition: N ⊂ M is umbilic if and only if it is contained in a
hyperplane.
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Differential equation of umbilic immersions

Assume ξ = φ. The immersion φ ⊂ M is umbilic if there exists
some constant vector Q 6= O that belongs to the affine normal
plane A(t), for any t ∈ U. This is equivalent to say that for some
(and hence any) g -orthonormal frame {X1, ...,Xn} of N = φ(U),
we have

[φ,X1, ....,Xn,Q] = 1.

This is equivalent to

1

n
∆φ = −λφ+ Q,

for some constant vector Q.



Affine distance to a hypersurface in the (n + 1)-space

Consider a non-degenerate immersion f : U ⊂ Rn → Rn+1 and fix
O ∈ Rn+1. Denote by ν : U → Rn+1

∗ the co-normal map of f .
Define φ : U → Rn+2 by

φ(t) = (ν(t), ν(t) · (f (t)− O)) ,

where ν(t) · (f (t)−O) is the affine distance or support function of
f with respect to the origin O.

Theorem: The immersion φ is umbilic. Conversely, any umbilic
immersion is given by the above equation, for some immersion f
and origin O.
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Contact with hyperquadrics

Proposition: Assume that f is compact. Then φ is contained in a
hyperplane if and only f is a n-dimensional ellipsoid.

Proof. For a n-dimensional ellipsoid and O its center, the affine
distance is constant. Conversely, if the affine distance is constant,
then the affine evolute of f is a point and f is totally umbilic. Thus
f is an affine sphere, and a compact affine sphere is an ellipsoid.
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Sketch of proof
Let {X1, ....,Xn} be a h-orthonormal frame.

φ = (ν, ν · (f − O)) , φ∗X = (ν∗X , ν∗X · (f − O)) ,

DXφ∗Y = (DXν∗Y ,DXν∗Y · (f − O))− h(X ,Y )Q.

Writing

DXν∗Y =
n∑

i=1

aiν∗Xi + bν,

(DXν∗Y ,DXν∗Y · (f − O)) =
n∑

i=1

aiφ∗Xi + bφ,

which is tangent to M. Thus g = h for the frame {φ,Q}.
Moreover

[φ, φ∗X1, ..., φ∗Xn,Q] = [ν, ν∗X1, ..., ν∗Xn] = 1,

thus proving that Q belongs to the affine normal plane.



The Laplacian of φ

We have proved that the immersion

φ(t) = (ν(t), ν(t) · (f (t)− O))

is umbilical and that the affine metric g coincides with the
Blaschke metric h of f . From this we obtain(

1

n
∆ν,

1

n
∆ν(t) · (f (t)− O)

)
= (−ρν,−ρν · (f − O) + 1) ,

where 0 ∈ Rn+1 and ρ is the affine mean curvature of f . We
conclude that

1

n
∆φ = −ρφ+ Q.



Proof of the converse-I

To prove the converse, assume that φ is umbilic and write
φ = (ψ, z). Define f by the conditions

ψ · (f − O) = z ; ψ∗X · (f − O) = X (z),

for some origin O ∈ Rn+1. These equations imply that ψ · f∗X = 0,
for any X, and so ψ = λν, for some λ ∈ R.

Take a local frame {X1, ..,Xn} g -orthonormal such that

[φ, φ∗X1, ..., φ∗Xn,Q] = 1.

Then
[ψ,ψ∗X1, ..., ψ∗Xn] = 1.
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Proof of the converse-II

So we have
[ν, ν∗X1, ..., ν∗Xn] = λn+1.

Arguing as above, one can verify that g(X ,Y ) = −ψ∗Y · f∗X .
Thus

g(X ,Y ) = λh(X ,Y ).

From this we conclude that

[ν, ν∗X1, ..., ν∗Xn] = λn/2.

Comparing with the above formula we obtain λ = 1, thus proving
the theorem.
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Thank you!

Obrigado!
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