Folding maps on a crosscap Martín Barajas Sichacá

Institute of Mathematics and Computer Science, Sao Paulo University

mbarajas@icmc.usp.br

SÃOCARLOS

Abstract We study the singularities of the family of folding maps on a crosscap. We give a list of the generic singularities that appear in the members of the family, and characterise them geometrically.

Introduction

Given a plane W in Euclidean space \mathbb{R}^3 with normal vector η , the **folding map** with respect to W is the map $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$f(p) = q + \lambda^2 \eta,$$

where q is the projection of p into W along η . Thus, p and its reflection with respect to W have the same image by f (see **Figure 1**).

the following types:

Case (i): η is transversal to the tangent cone

Type Normal form	\mathcal{A}_e -cod.	Condition
$B_{2}^{\pm} (x, y^{2}, x^{2}y \pm y^{5})$	2	$\alpha \neq 0, \gamma \neq p_3 \alpha;$
B_3^{\pm} $(x, y^2, x^2y \pm y^7)$	3	$\alpha \neq 0, \gamma = p_3 \alpha, (*);$
B_4^{\pm} $(x, y^2, x^2y \pm y^9)$	4	$\alpha \neq 0, \gamma = p_3 \alpha, (**);$
C_{3}^{\pm} $(x, y^{2}, xy^{3} \pm x^{3}y)$	3	$\alpha = 0, \Phi(\beta, \gamma) \neq 0;$
$C_4^{\pm} (x, y^2, xy^3 \pm x^4y)$	4	$\alpha = 0, \Phi(\beta, \gamma) = 0;$
$F_{1,0}$ $(x, y^2, x^3y + A_1xy^5 + B_1y)$	$^{7})$ 4	$\beta = 1, 4A_1^3 + 27B_1^2 \neq 0$

where $\Phi(\beta, \gamma) = -2b\beta^3 + (4a - b^2 + 2)\beta^2\gamma + \gamma^3$ and $F_{1,0}$ is an unimodal singularity.

Case (ii): η is in the tangent cone and $\gamma \neq 0$

Туре	Normal form	
------	-------------	--

 \mathcal{A}_e -cod. Condition

Let Z a 3-manifold such that Z parametrizes the planes in \mathbb{R}^3 . We define the **family of folding maps**

$G: \mathbb{R}^3 \times Z \to \mathbb{R}^3$

by $G(p, z) = f_z(p)$, where $f_z(p)$ is the folding map with respect to the plane determined by z.

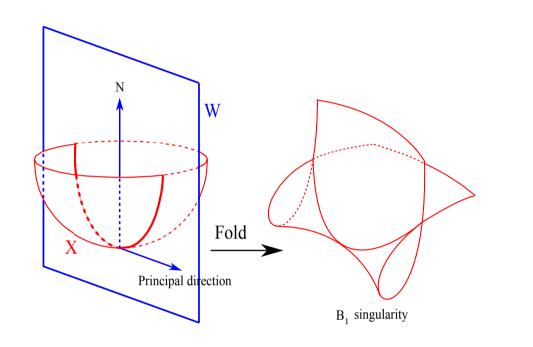


Figure 2: Folding map on a regular surface.

In particular, they proved that the bifurcation set $\mathcal{B}(F_g)$ is the dual of the union of the focal and symmetry sets of X, where X is a smooth surface in \mathbb{R}^3 .

Respect that duality and its corresponding geometry, we are interested in this cases:
the subparabolic points in X correspond to S₂ singularity type of the folding map,
the ridge points in X correspond to B₂ singularity type of the folding map.

The family of folding maps on a generic crosscap

η

Figure 1: Folding map.

Given an embedding $g: X \to \mathbb{R}^3$, that is a smooth surface in \mathbb{R}^3 , we obtain a **family the folding maps** on X

 $G_g: X \times Z \to \mathbb{R}^3,$

by restriction (see Figure 2).

Bruce & Wilkinson [2, 7] studied the family of folding maps on smooth surfaces in \mathbb{R}^3 .

$P_3 \qquad (x, xy + y^3, xy^2 + ky^4)$	3	$\alpha \neq -p_3\gamma, k \neq \frac{1}{2}, 1, \frac{3}{2};$
$P_4(\frac{1}{2}) \ (x, xy + y^3, xy^2 + \frac{1}{2}y^4)$		$\alpha \neq -p_3 \gamma \mathbf{e} \Psi(\frac{1}{2}, \alpha) = 0;$
$P_4(\frac{3}{2}) \ (x, xy + y^3, xy^2 + \frac{3}{2}y^4)$		$\alpha \neq -p_3 \gamma \mathbf{e} \Psi(\frac{3}{2}, \alpha) = 0;$
$P_4(\bar{1}) \ (x, xy + y^3, xy^2 + \bar{y}^4)$		$\alpha \neq -p_3 \gamma \mathbf{e} \Psi(\bar{1}, \alpha) = 0;$
$R_4 \qquad (x, xy + y^6 + A_2y^7, xy^2 + y^4 + B_2y^6)$	4	$lpha=-p_{3}\gamma$;
$T_4 \qquad (x, xy + y^3, y^4)$	4	$\gamma = 1;$

where $\Psi(k, \alpha) = 4k^2(p_3^2 + 1)\alpha^2 - 4k(p_3^2 + 1)\alpha + 1.$

Case (iii) $\alpha = 1$, and then f_{η} has corank 2 and is equivalent to

 $(x^2, xy + y^3, y^2 + A_3x^3 + B_3x^2y + C_3xy^2 + y^3).$

The **Figure 4** shows the stratification of the parameter space associate with the **Theorem 2**.

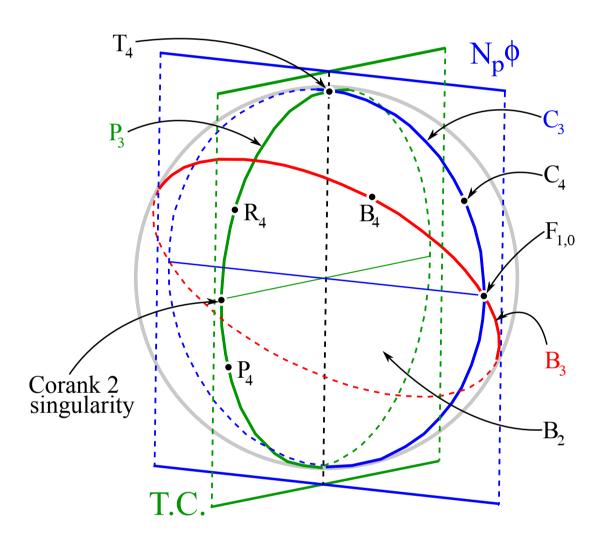
Proposition 2

The singularities of the family of folding maps on a crosscap are not versally unfolded by the family G.

The geometry of the folding maps

There is a geometric correspondence for some of the singularities of the folding family. For this part we use the definitions for subparabolic and ridge points given in [3].

We say that $p \in \phi$ is a subparabolic point relative to v_i if $v_i k_j(p) = 0$, $i \neq j$, where v_i is a principal direction and k_i is a principal curva-



We consider a geometric crosscap in \mathbb{R}^3 parametrized by $\phi: U \subset \mathbb{R}^2 \to \mathbb{R}^3$, with

$$\phi(x,y) = (x, xy + p_3y^3 + O(4), ax^2 + bxy + y^2 + \sum_{i=0}^3 q_{3i}x^{3-i}y^i + O(4)), \tag{1}$$

see [1, 6].

In [6] is given a geometric characterization for the crosscap (1) in terms of the parameter a, namely, the crosscap is elliptic (respectively hyperbolic) if a > 0 (respectively a < 0) and parabolic if a = 0 (see **Figure 3**).

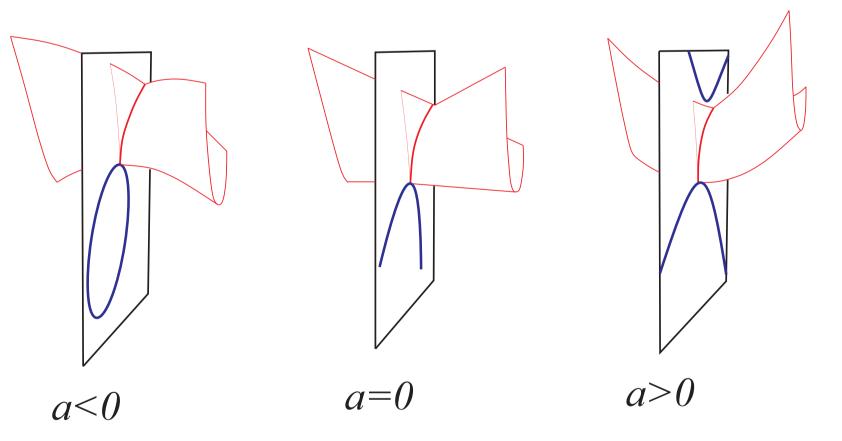


Figure 3: Classification of geometric crosscaps and their focal conics.

In [6] is also proved that the **tangent cone** T.C. to the crosscap at the crosscap point is the plane generated by the tangent direction and the limiting tangent of the double point curve.

For $\eta \in \mathbb{S}^2$ and $\delta \in \mathbb{R}$, consider the plane

$$P_{(\eta,\delta)} = \left\{ p \in \mathbb{R}^3 \mid \langle p, \eta \rangle = \delta \right\}.$$

ture. Analogously, $p \in \phi$ is a ridge point relative to v_i if $v_i k_i(p) = 0$.

Theorem 3

Figure 4: Stratification of the parameters space.

We have the following characterization of the singularities of the folding maps on a crosscap.
(i) The subparabolic points relative to v₂ correspond to C₄ singularities.
(ii) The ridge points relative to v₁ correspond to F_{1,0} and T₄ singularities.
(iii) The corank 2 map germ appears when η is parallel to the tangent direction.
(iv) When η is in the limiting tangent of the double point curve the singularity is of type R₄.

For ϕ consider the family of distance squared functions $D: \phi \times \mathbb{R}^3 \to \mathbb{R}$ given by

 $D(p,h) = D_h(p) = \langle p - h, p - h \rangle \,.$

It is well known (see for example [4]) that the focal set can be modelled locally by the bifurcation set of D.

Is showed in [6] that the part of the focal set corresponding to the crosscap point is a conic section in the normal space $N_{(0,0,0)}\phi$ (see **Figure 3**).

Proposition 3

The tangent space to the focal set of ϕ at points on the focal conic is constant and it coincide with the normal space at the crosscap point

References

[1] BRUCE, J. W., AND WEST, J. M. Functions of a crosscap. Math. Proc. Camb. Phil. Soc. 123 (1998), 19–39.

[2] BRUCE, J. W., AND WILKINSON, T. C. Folding maps and focal sets. *Lecture Notes in Mathematics, Springer-Verlag*

Thus, the set of all the planes in \mathbb{R}^3 can be parametrized locally by $\mathbb{S}^2 \times \mathbb{R}$.

We fix a generic crosscap ϕ then, the **family of folding maps on a crosscap** $G: U \times \mathbb{S}^2 \times \mathbb{R} \to \mathbb{R}^3$ is given by

```
\begin{split} G(x,y,\eta,\delta) &= \phi(x,y) + (\langle \eta,\phi(x,y)\rangle - \delta)(\langle \eta,\phi(x,y)\rangle - \delta - 1)\eta, \\ &= f_{(\eta,\delta)}(x,y), \end{split}
```

where $f_{(\eta,\delta)}$ correspond to the folding map with respect to the plane $P_{(\eta,\delta)}$.

Proposition 1

For each $(\eta, \delta) \in \mathbb{S}^2 \times \mathbb{R}$, the folding map on a crosscap $f_{(\eta, \delta)}$ is singular at the origin and the singularity is more degenerate than a crosscap if, and only if, $\delta = 0$.

Denote $f_{(\eta,0)}$ by f_{η} and let $\eta = (\alpha, \beta, \gamma)$ with $\alpha^2 + \beta^2 + \gamma^2 = 1$.

Theorem 2

For a generic crosscap ϕ , the folding map f_{η} in the family G has singularities A-equivalent to one of

- *1462* (1991), 63–62.
- [3] FUKUI, T., AND HASEGAWA, M. Fronts of whitney a differential geometric approach via blowing up. *Journal of Singularities 4* (2012), 35–67.
- [4] IZUMIYA, S., ROMERO, C., RUAS, M. A. S., AND TARI, F. Differential Geometry from a Singularity Theory Viewpoint. WSPC, 2015.

[5] MOND, D. On the classification of germ of maps from \mathbb{R}^2 to \mathbb{R}^3 . *Proc. London Math. Soc. s*3-50(2)(1985), 333–369.

[6] WEST, J. M. The differential geometry of the crosscap. PhD thesis, University of Liverpool, 1995.

[7] WILKINSON, T. C. The geometry of folding maps. PhD thesis, University of Newcastle upon Tyne, 1991.

Acknowledgements

