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Holomorphic first integral

Definition (1)

We say that a germ of holomorphic foliation F(X ) has a holomorphic first

integral, if there is a germ of holomorphic map F : (Cn,0) → (Cn−1,0)
such that:

(a) F is a submersion almost everywhere, i.e., if we write

F = (f1, · · · , fn−1) in coordinate functions, then the

(n − 1)-form df1∧ · · · ∧ dfn−1 is non-identically zero,

equivalently, it has maximal rank except for a proper analytic

subset;

(b) The leaves of F(X ) are contained in level curves of F .
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F(X )-invariant meromorphic functions

Definition

Further, a germ f of a meromorphic function at the origin 0 ∈ Cn is called

F(X )-invariant if the leaves of F(X ) are contained in the level sets of f .

This can be precisely stated in terms of representatives for F(X ) and f , but

can also be written as iX (df ) = X (f ) ≡ 0.
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generic germs

Definition

We say that F(X ) is non-degenerate generic if DX (0) is non-singular,

diagonalizable and, after some suitable change of coordinates, X leaves

invariant the coordinate planes.
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First integrals and resonance

A generic vector field X ∈ (X(C3,0)) has a holomorphic first
integral F = (f1, f2) if and only if iX dfj = 0, j = 1,2, and f1, f2 are
transversal off the singular set of X .

Consider a vector field

X (x) =
3∑

j=1

λjxj(1 + aj(x))
∂

∂xj

with aj ∈ M3, then any F-invariant holomorphic function must be
of the form f (x) =

∑
|N|≥p aNxN , aN ∈ C, p ≥ 2 and N ∈ N3 − C3

with C3:={(n1,n2,n3) ∈ N3 : n1n2n3 = 0}.
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First integrals and resonance

Since ∂f
∂xj

=
∑

|N|≥p njaNxNx−1
j , then

Jp(df (X )) =
∂f (x)
∂x1

· (λ1x1) +
∂f (x)
∂x2

· (λ2x2) +
∂f (x)
∂x3

· (λ3x3)

=
∑

|N|=p

(λ1n1 + λ2n2 + λ3n3)aNxN .

From iX df = 0 we obtain

0 = (λ1n1 + λ2n2 + λ3n3)aN for all |N| = p, N ∈ N3 − C3. (1)

Thus in the absence of a resonance of the form

λ1n1 + λ2n2 + λ3n3 = 0, (2)

there will be no first integral.
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Lemma

Let λ1, λ2, λ3 ∈ C∗, and let (n1,n2,n3), (m1,m2,m3) ∈ N3 − C3 be
linearly independent and satisfying (2) above. Then there are
m,n, k ∈ Z and λ ∈ C∗ such that

(λ1, λ2, λ3) = λ(m,n, k)

and m · n · k < 0.
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Proposition

Suppose that X ∈ Gen(X(C3,0)) is generic and has a holomorphic
first integral, then FX can be given in local coordinates by a vector
field of the form

X (x) = mx1(1 + a1(x))
∂

∂x1
+ nx2(1 + a2(x))

∂

∂x2
− kx3(1 + a3(x))

∂

∂x3

where m,n, k ∈ Z+ and a1,a2,a3 ∈ M3.
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Sketch of proof

Suppose that J1(X ) = λ1x1
∂
∂x1

+ λ2x2
∂
∂x2

+ λ3x3
∂
∂x3

, then
Lemma 4 assures that its enough to prove that there is a pair of
linearly independent vectors M,N ∈ N3 − C3 satisfying (2).

Suppose F = (f ,g) is a first integral for X , with
f (x) =

∑
|N|≥p aNxN and g(x) =

∑
|N|≥q bNxN . From (2) we have

0 = (λ1n1 + λ2n2 + λ3n3)aN for all |N| = p. If there are two
distinct aN ,aN′ 6= 0, then N and N ′ satisfy the desired condition.

Reasoning in the same manner for g we just have to consider the
case f (x) = aPxP +

∑
|N|≥p+1 aNxN and

g(x) = bPxP +
∑

|N|≥p+1 bNxN with |P| = p, and aP ,bP 6= 0.
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Now let f1 := 1
aP

f − 1
bP

g, then it can be written in the form
f1(x) = h1(xP) +

∑
|N|=q,N /∈〈P〉 cNxN + · · · , where h1 ∈ M is a

polynomial such that τ1 := deg(h1) < q, where q = |N| is the
least natural number such that there exists cN 6= 0 form some
N /∈ 〈P〉, where 〈P〉 denotes the ideal in Nn generated by the
coordinates of P (notice that such q exists, since f and g are
transversal off the origin).

Pick inductively fk := fk−1 − h(τk−1)
k−1 (0)

(
1

bP
g
)τk−1

, where

τk := deg(fk ), then after repeating this process a finite number of
steps we have k0 ∈ Z+ such that
fk0(x) =

∑
|N|=q,N /∈〈P〉 cNxN + · · ·

Since the set of FX -invariant holomorphic functions is a sub-ring
of O3, then fk0 is an FX -invariant holomorphic function; in
particular it satisfies (1). Therefore, it is enough to pick R /∈ 〈P〉
such that |R| = q and cR 6= 0.
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Definition

Let X ∈ Gen(X(C3,0)). We say that X satisfies condition (⋆) if there is a

real line L ⊂ C through the origin containing the eigenvalues of X such that

one of the connected components L \ {0} contains a single eigenvalue λ(X )
of X . In other words, not all the eigenvalues of X belong to the same

connected component of L \ {0}.
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Lemma

Let N,M ∈ N3 − C3 be two vectors satisfying (2), and let f (x) = xN ,
g(x) = xM . Then Sat(df = 0) is transversal to Sat(dg = 0) if and only
if N and M are linearly independent.
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An algebraic characterization of integrable linear vector fields is given
by the following result.

Lemma

Any linear vector field of the form X (x) = mx1
∂
∂x1

+ nx2
∂
∂x2

− kx3
∂
∂x3

,
where (m,n, k) ∈ Z3

+, has a holomorphic first integral of the form
F (x) = (xN , xM), where N,M ∈ N3 − C3.

Proof.

From Lemma 7 and the calculations made in order to obtain (1), one
can easily check that this is just a matter of finding two linearly
independent solutions in N3 − C3 for the homogeneous equation
mx + ny − kz = 0. Therefore, we just have to pick xj := kx̃j and
yj := kỹj , j = 1,2, where (x̃1, ỹ1), (x̃2, ỹ2) ∈ N2 are linearly
independent.
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Let X ∈ Gen(X(C3,0)) be given by

X (x) = −
m1x1

k
(1 + a1(x))

∂

∂x1
−

m2x2

k
(1 + a2(x))

∂

∂x2
+ x3

∂

∂x3

where m1,m2, k ∈ Z+, S := (x1 = x2 = 0) and Σ := (x3 = 1), and
〈h〉 = Hol(FX ,S,Σ). We conclude that h is resonant.
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Figure: The lifting of γ along the leaves of F .
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Now consider the closed loop γ : [0,1] −→ S given by
γ(t) = (0,0,e2πit) and let Γ(x1,x2)(t) = (Γ1(t , x1, x2), Γ2(t , x1, x2), γ(t))
be its lifting along the leaves of FX starting at (x1, x2,1) ∈ Σ. In
particular, the map h ∈ Diff(C2,0) given by Γ(x1,x2)(1) = (h(x1, x2),1)
is a generator of (FX ,S,Σ). Since Γ(x1,x2)(t) belongs to a leaf of FX ,
then ∂

∂t Γ(x1,x2)(t) = αX (Γ1(t , x1, x2), Γ2(t , x1, x2), γ(t)). From this vector
equation we obtain that γ′(t) = αγ(t), and thus α = 2πi. Furthermore

∂

∂t
Γn = −

2mjπi

k
Γj(1 + aj(Γ1, Γ2, γ)), j = 1,2;
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If we let Γn(t , x1, x2) =
∑

i+j≥1 cn
i,j(t)x

i
1x j

2 and consider the first jet in
the variables (x1, x2) of the above equations, then

(cn
i,j)

′(t) = −
2mjπi

k
cn

i,j(t), i , j ,n − 1 ∈ {0,1}. (3)

Recall that Γn(0, x1, x2) = xn thus

(
c1

1,0(0) c1
0,1(t)

c2
1,0(t) c2

0,1(t)

)
=

(
1 0
0 1

)

Thus c2
1,0(t) = c1

0,1(t) = 0, c1
1,0(t) = exp(− 2m1πi

k t) and

c2
0,1(t) = exp(− 2m2πi

k t) are the solutions for (3). In particular

h′(0,0) =
(

c1
1,0(1) c1

0,1(1)
c2

1,0(t) c2
0,1(t)

)
=

(
exp(− 2m1πi

k ) 0
0 exp(− 2m2πi

k )

)

(4)
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Therefore, h is resonant. Notice that the same above computation
shows that if X ∈ Gen(X(C3,0)) is given by

X (x) = −λ1x1(1 + a1(x))
∂

∂x1
− λ2x2(1 + a2(x))

∂

∂x2
+ x3

∂

∂x3
,

thus the holonomy map h(x1, x2) has linear part given by

h′(0,0) =
(

exp(−2πiλ1) 0
0 exp(−2πiλ2)

)
(5)

In particular, we conclude that if h has finite orbits, then necessarily
λ1, λ2 ∈ Q (indeed, this is quite well-known for one-dimensional
germs of diffeomorphisms and one just to consider the restriction of h
to the coordinates axes x1 and x2 to use this case).
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Germs of diffeomorphisms

Orbits

Let G ∈ Diff(C2,0) and V a neighborhood of the origin where a
representative (also denoted by G) of the germ G is defined. Then we
denote by

O+
V (G, x) =

{
G◦(n)(x) : G◦(j)(x) ∈ V , j = 0, . . . ,n

}

the so called positive semiorbit of x ∈ V by G. Analogously, the
negative semiorbit of x ∈ V by G is the set O−

V (G, x) := O+
V (G

−1, x).
The orbit of x ∈ V by G is the set OV (G, x) = O+

V (G, x) ∪ O−
V (G, x).

The cardinality of OV (G, x) is denoted by |OV (G, x)|.
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Germs of diffeomorphisms

Orbits

Theorem (Brochero Martínez [4])

Let G ∈ Diff(C2,0), then the group generated by G is finite if and only
if there exists a neighborhood V of the origin such that
|OV (G, x)| < ∞ for all x ∈ V and G preserves infinitely many analytic
invariant curves at 0.

Using the same arguments as in the one-dimensional case (cf. [10],
Proposition 1.1, p. 475-476), one can prove that a finite abelian (e.g.,
cyclic) subgroup of Diff(Cn,0) is always periodic, i.e., it is generated
by a periodic (and linearizable) element. Contrasting with the one
dimensional case, in greater dimensions the finiteness of the orbits in
not enough to ensure the periodicity of the group (cf. [10], Theorem 2,
p. 477).
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Germs of diffeomorphisms

Orbits

Example

Consider the map G(x , y) = (x + y2, y). The orbits of G are confined in

the level sets of f (x , y) = y and are clearly finite. Notice that

#OV (G, (x , y)) → ∞ as y → 0, thus G is not periodic nor linearizable.

Furthermore, the orbits OV (G, (x , y)) are far from being stable, since in

each line (y = c) the map G acts as a translation.

Proposition

Let f ,g ∈ O2 be generically transverse germs and G ∈ Diff(C2,0) be
a complex map germ having finite orbits and preserving the level sets
of both f and g. Then G is periodic.
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Germs of diffeomorphisms

Idea of the proof

Since f and g are generically transverse, then one can find a pure
meromorphic function ho = fo/go whose level sets are preserved by
G. Hence the infinitely many curves fo(x , y)− c · go(x , y) = 0 with
c ∈ (C,0) pass through the origin and are invariant by G. Thus
Theorem 9 ensures that G is periodic.
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Germs of diffeomorphisms

Sketch of proof

Now let us construct ho. If f/g is already pure meromorphic, then
it is enough to pick ho := f/g.

Otherwise one has f = h · gk , where k ∈ Z+, and h is a germ of
holomorphic function not divisible by g. Clearly, h is G-invariant,
thus if it has an irreducible component distinct from the
irreducible components of g, then h/g must be a G-invariant
pure meromorphic function.

Suppose that the decomposition in irreducible components of g
and h are of the form g = gp1

1 · · · gpn
n and h = gq1

1 · · · gqn
n . Since h

is not divisible by g, then there must be j0 ∈ {1, · · · ,n} such that
qj0 < pj0 . If there is also j1 ∈ {1, · · · ,n} such that qj1 > pj1 , then
h/g is a pure meromorphic G-invariant function.
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Germs of diffeomorphisms

Sketch of proof

From now on we suppose that qj ≤ pj for all j = 1, . . . ,n with at
least one j0 ∈ {1, · · · ,n} such that qj0 < pj0 . If there is
j1 ∈ {1, · · · ,n} such that qj1 = pj1 , then after reordering the
indexes (if necessary) we may suppose that: (i) qi < pi for all
i = 1, . . . ,n0; (ii) qi = pi for all i = n0 + 1, · · · ,n; for some
n0 ∈ {1, · · · ,n − 1}. Then h := g/h = gp1−q1

1 · · · g
pn0−qn0
n0

is a
G-invariant germ of a holomorphic function. Now, let
s1 := [p1/(p1 − q1)] + 1 (where [x ] denotes the integer part of
x ∈ R), then a straightforward calculation shows that g/h

s1 is a
pure meromorphic function.
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Germs of diffeomorphisms

Sketch of proof

Hereafter we suppose that qj < pj for all j = 1, . . . ,n. Recall that
the Euclid’s algorithm of a pair of positive integers (p,q), p > q,
is the sequence of pairs of positive integers {(pj ,qj)}

n+1
j=1 given

by: (1) (pj+1,qj+1) := (p,q); (2) pj = qj · rj + sj , where rj := [p/q]
and sj < qj ; (3) (pj+1,qj+1) := (qj , rj); and (4) sn > 0 and
sn+1 = 0. This is called the Euclid’s sequence of the pair (p,q).
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Germs of diffeomorphisms

Sketch of proof

For simplicity, suppose that g and h have only two irreducible
components, say g = f p(f )p and h = f q(f )q , and let {(pj ,qj)}

n+1
j=1

and {(pj ,q j)}
n+1
j=1 be the Euclid’s sequence of (p,q) and (p,q),

respectively. If r1 = [p1/q1] < [p1/q1] = r1, then
p1 − (r1 +1)q1 < 0 and p1 − (r1 +1)q1 ≥ 0. If p1 − (r1 +1)q1 6= 0,
then g/hr1+1 is a G-invariant germ of a pure meromorphic
function, otherwise g/hr1+1 = 1/f (r1+1)q1−p1 and g · (g/hr1+1)p1 is
a G-invariant germ of a pure meromorphic function.



Holomorphic first integrals and first jets

Finite orbits and periodic maps

Closed leaves versus first integrals

The main result: stability, flags and first integrals.

Germs of diffeomorphisms

Sketch of proof

Arguing inductively along the Euclid’s sequences of (p,q) and
(p,q) one can always construct a G-invariant pure meromorphic
function unless rj = r j for all j = 1, · · · ,n + 1. But this means that
(p,q) = (αsn, βsn) and (p,q) = (αsn, βsn) for some α, β ∈ Z+.
Therefore g, h, and f are powers of the same holomorphic
function f sn(f )sn , thus f and g cannot be generically transverse. A
contradiction! The reasoning in the case of many irreducible
factors is analogous, being in fact a consequence of the above
reasoning.
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Germs of diffeomorphisms

A straightforward consequence is the following:

Corollary

Let X ∈ Gen(X(C3,0)) and SX be the distinguished axis of X .
Suppose that F(X ) admits a meromorphic first integral, then the
holonomy group Hol(F(X ),SX ,Σ) is periodic.
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Germs of diffeomorphisms

Non periodic groups with finite orbits

Example

Blowing up G = (g1,g2) = (x + y2, y) at the origin one has

G̃(t , x) = (t − t3x + t5x2 − t7x3 + · · · , x + tx)

whose orbits are finite and confined in the level sets of f̃ (t , x) = tx (In fact,

G acts in these level sets of f̃ in some sort of translation whose orbits

increase in cardinality as f̃ (t , x) → 0). From Proposition 11 G does not

preserve the level sets of a couple of generically transverse functions

f ,g ∈ O2.
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Non periodic holonomy with finite orbits

Example

Let X (x) = −[x1 − x2
2 (x3)

2/2πi] ∂
∂x1

− 3x2
∂
∂x2

+ x3
∂
∂x3

, then
S := {x1 = x2 = 0} is invariant by X and the holonomy of F(X ) with
respect to S evaluated at Σ = (x3 = 1) has the form

h(x1, x2) = (x1 + x2
2 , x2).
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Non periodic holonomy with finite orbits

Completing the above example we obtain:

Example

Consider the vector field X (x , y , z) = −[x − 1
2πi

y2z2] ∂
∂x − 3y ∂

∂y + z ∂
∂z ,

after one blow up along the z-axis one has

π∗X (t , x , z) = −x(1 −
1

2πi
t2xz2)

∂

∂x
− t(2 − t2xz2)

∂

∂x2
+ z

∂

∂z

which has an isolated singularity at the origin, and whose holonomy with

respect to the z-axis is precisely the map G̃ in Example 13. Thus it satisfies

condition (⋆) and has all leaves closed but does not admit a first integral in

the sense of Definition 1.
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We consider a germ X ∈ Gen(X(C3,0)) satisfying condition (*).

Definition (stability)

The germ X is transversely stable with respect to SX if for any representative

XU of the germ X , defined in an open neighborhood U of the origin, any

open section Σ ⊂ U transverse to SX with Σ ∩ SX = {qΣ} 6= {0}, and any

open set qΣ ∈ V ⊂ Σ there is an open subset qΣ ∈ W ⊂ V such that all

orbits of XU through W intersect Σ only in V .
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Lemma

Let G ∈ Diff(C2,0) be represented by the map G : W → V, where
W ⊂ V are open neighborhoods of the origin with compact closure.
Suppose G has finite orbits with stable positive semiorbit, i.e., there
are W and V as above with W ⊂ V and satisfying G◦(n)(x) ⊂ V for all
x ∈ W and n ∈ Z+. Then G is periodic, i.e., there is p ∈ Z+ such that
G◦p = Id.
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Theorem

Suppose that X ∈ Gen(X(C3,0)). Then the following conditions are
equivalent:

1 F(X ) has a holomorphic first integral.
2 X satisfies condition (⋆), the leaves of F(X ) are closed off the

origin and transversely stable with respect to SX .

Corollary

Let X ,Y ∈ Gen(X(C3,0)) be generic germs of holomorphic vector
fields, both satisfying condition (⋆). Assume that X and Y are
topologically equivalent. Then X has a holomorphic first integral if
and only if Y admits a holomorphic first integral.
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Theorem

Suppose that X ∈ Gen(X(C3,0)) satisfies condition (⋆) and let SX be
the distinguished axis of X . Then the following conditions are
equivalent:

1 The leaves of F(X ) are closed off the origin and transversely
stable with respect to SX ;

2 Hol(F(X ),SX ,Σ) has finite orbits and is (topologically) stable;
3 Hol(F(X ),SX ,Σ) is periodic;
4 F(X ) has a holomorphic first integral.
5 The leaves of F(X ) are closed off the origin and there is an

adapted flag (F(X ),F(ω));
6 The leaves of F(X ) are closed off the origin and there is a flag

F(X ) ⊂ F(ω) such that F(ω) is a Kupka component of radial type.
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