Closed orbits, flags, and integrability for singularities of complex vector fields in dimension three

Leonardo Meireles Câmara

14th International Workshop on Real and Complex Singularities - São Carlos - ICMC/USP

July 28, 2016

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals.

basic definitions Algebraic criterion

Linear vector fields Holonomy and first jet

Holomorphic first integral

Definition (1)

We say that a germ of holomorphic foliation $\mathcal{F}(X)$ has a holomorphic first *integral*, if there is a germ of holomorphic map $F: (\mathbb{C}^n, 0) \to (\mathbb{C}^{n-1}, 0)$ such that:

(a) F is a submersion almost everywhere, i.e., if we write $F = (f_1, \dots, f_{n-1})$ in coordinate functions, then the (n-1)-form $df_1 \wedge \dots \wedge df_{n-1}$ is non-identically zero, equivalently, it has maximal rank except for a proper analytic subset;

(b) The leaves of $\mathcal{F}(X)$ are contained in level curves of F.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions

Algebraic criterion Linear vector fields Holonomy and first jet

$\mathcal{F}(X)$ -invariant meromorphic functions

Definition

Further, a germ *f* of a meromorphic function at the origin $0 \in \mathbb{C}^n$ is called $\mathcal{F}(X)$ -*invariant* if the leaves of $\mathcal{F}(X)$ are contained in the level sets of *f*. This can be precisely stated in terms of representatives for $\mathcal{F}(X)$ and *f*, but can also be written as $i_X(df) = X(f) \equiv 0$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals.

generic germs

basic definitions

Algebraic criterion Linear vector fields Holonomy and first jet

Definition

We say that $\mathcal{F}(X)$ is *non-degenerate generic* if DX(0) is non-singular, diagonalizable and, after some suitable change of coordinates, X leaves invariant the coordinate planes.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんゆ

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

First integrals and resonance

A generic vector field X ∈ (𝔅(𝔅³, 0)) has a holomorphic first integral F = (f₁, f₂) if and only if i_Xdf_j = 0, j = 1, 2, and f₁, f₂ are transversal off the singular set of X.

Consider a vector field

$$X(x) = \sum_{j=1}^{3} \lambda_j x_j (1 + a_j(x)) \frac{\partial}{\partial x_j}$$

with $a_j \in \mathcal{M}_3$, then any \mathcal{F} -invariant holomorphic function must be of the form $f(x) = \sum_{|N| \ge p} a_N x^N$, $a_N \in \mathbb{C}$, $p \ge 2$ and $N \in \mathbb{N}^3 - C_3$ with $C_3 := \{(n_1, n_2, n_3) \in \mathbb{N}^3 : n_1 n_2 n_3 = 0\}$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

First integrals and resonance

- A generic vector field X ∈ (𝔅(ℂ³, 0)) has a holomorphic first integral F = (f₁, f₂) if and only if i_Xdf_j = 0, j = 1, 2, and f₁, f₂ are transversal off the singular set of X.
- Consider a vector field

$$X(x) = \sum_{j=1}^{3} \lambda_j x_j (1 + a_j(x)) \frac{\partial}{\partial x_j}$$

with $a_j \in \mathcal{M}_3$, then any \mathcal{F} -invariant holomorphic function must be of the form $f(x) = \sum_{|N| \ge p} a_N x^N$, $a_N \in \mathbb{C}$, $p \ge 2$ and $N \in \mathbb{N}^3 - C_3$ with $C_3 := \{(n_1, n_2, n_3) \in \mathbb{N}^3 : n_1 n_2 n_3 = 0\}$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

First integrals and resonance

Since
$$\frac{\partial f}{\partial x_j} = \sum_{|N| \ge p} n_j a_N x^N x_j^{-1}$$
, then

$$J^p(df(X)) = \frac{\partial f(x)}{\partial x_1} \cdot (\lambda_1 x_1) + \frac{\partial f(x)}{\partial x_2} \cdot (\lambda_2 x_2) + \frac{\partial f(x)}{\partial x_3} \cdot (\lambda_3 x_3)$$

$$= \sum_{|N|=p} (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N x^N.$$

• From $i_X df = 0$ we obtain

 $0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N \text{ for all } |N| = p, N \in \mathbb{N}^3 - C_3.$ (1)

Thus in the absence of a resonance of the form

$$\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3 = 0, \qquad (2)$$

there will be no first integral.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のの⊙

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

First integrals and resonance

• Since
$$\frac{\partial f}{\partial x_i} = \sum_{|N| \ge p} n_j a_N x^N x_j^{-1}$$
, then

$$J^{p}(df(X)) = \frac{\partial f(x)}{\partial x_{1}} \cdot (\lambda_{1}x_{1}) + \frac{\partial f(x)}{\partial x_{2}} \cdot (\lambda_{2}x_{2}) + \frac{\partial f(x)}{\partial x_{3}} \cdot (\lambda_{3}x_{3})$$
$$= \sum_{|N|=p} (\lambda_{1}n_{1} + \lambda_{2}n_{2} + \lambda_{3}n_{3})a_{N}x^{N}.$$

• From $i_X df = 0$ we obtain

$$0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N \text{ for all } |N| = p, N \in \mathbb{N}^3 - C_3.$$
(1)

Thus in the absence of a resonance of the form

$$\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3 = 0, \qquad (2)$$

there will be no first integral.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

First integrals and resonance

• Since
$$\frac{\partial f}{\partial x_i} = \sum_{|N| \ge p} n_j a_N x^N x_j^{-1}$$
, then

$$J^{p}(df(X)) = \frac{\partial f(x)}{\partial x_{1}} \cdot (\lambda_{1}x_{1}) + \frac{\partial f(x)}{\partial x_{2}} \cdot (\lambda_{2}x_{2}) + \frac{\partial f(x)}{\partial x_{3}} \cdot (\lambda_{3}x_{3})$$
$$= \sum_{|N|=p} (\lambda_{1}n_{1} + \lambda_{2}n_{2} + \lambda_{3}n_{3})a_{N}x^{N}.$$

• From $i_X df = 0$ we obtain

$$0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N \text{ for all } |N| = p, N \in \mathbb{N}^3 - C_3.$$
(1)

Thus in the absence of a resonance of the form

$$\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3 = 0, \qquad (2)$$

<ロ> <同> <同> < 同> < 同> < 同> :

there will be no first integral.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Lemma

Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}^*$, and let $(n_1, n_2, n_3), (m_1, m_2, m_3) \in \mathbb{N}^3 - C_3$ be linearly independent and satisfying (2) above. Then there are $m, n, k \in \mathbb{Z}$ and $\lambda \in \mathbb{C}^*$ such that

$$(\lambda_1, \lambda_2, \lambda_3) = \lambda(m, n, k)$$

and $m \cdot n \cdot k < 0$.

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Proposition

Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ is generic and has a holomorphic first integral, then \mathcal{F}_X can be given in local coordinates by a vector field of the form

$$X(x) = mx_1(1 + a_1(x))\frac{\partial}{\partial x_1} + nx_2(1 + a_2(x))\frac{\partial}{\partial x_2} - kx_3(1 + a_3(x))\frac{\partial}{\partial x_3}$$

where $m, n, k \in \mathbb{Z}_+$ and $a_1, a_2, a_3 \in \mathcal{M}_3$.

・ロト・雪ト・雪ト・雪 のくぐ

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals.

Sketch of proof

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

- Suppose that J¹(X) = λ₁x₁ ∂/∂x₁ + λ₂x₂ ∂/∂x₂ + λ₃x₃ ∂/∂x₃, then Lemma 4 assures that its enough to prove that there is a pair of linearly independent vectors M, N ∈ N³ − C₃ satisfying (2).
- Suppose F = (f, g) is a first integral for X, with $f(x) = \sum_{|N| \ge p} a_N x^N$ and $g(x) = \sum_{|N| \ge q} b_N x^N$. From (2) we have $0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N$ for all |N| = p. If there are two distinct $a_N, a_{N'} \ne 0$, then N and N' satisfy the desired condition.
- Reasoning in the same manner for *g* we just have to consider the case $f(x) = a_P x^P + \sum_{|N| \ge p+1} a_N x^N$ and $g(x) = b_P x^P + \sum_{|N| \ge p+1} b_N x^N$ with |P| = p, and $a_P, b_P \ne 0$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Sketch of proof

- Suppose that J¹(X) = λ₁x₁ ∂/∂x₁ + λ₂x₂ ∂/∂x₂ + λ₃x₃ ∂/∂x₃, then Lemma 4 assures that its enough to prove that there is a pair of linearly independent vectors M, N ∈ N³ − C₃ satisfying (2).
- Suppose F = (f, g) is a first integral for X, with $f(x) = \sum_{|N| \ge p} a_N x^N$ and $g(x) = \sum_{|N| \ge q} b_N x^N$. From (2) we have $0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N$ for all |N| = p. If there are two distinct $a_N, a_{N'} \ne 0$, then N and N' satisfy the desired condition.
- Reasoning in the same manner for *g* we just have to consider the case $f(x) = a_P x^P + \sum_{|N| \ge p+1} a_N x^N$ and $g(x) = b_P x^P + \sum_{|N| \ge p+1} b_N x^N$ with |P| = p, and $a_P, b_P \ne 0$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Sketch of proof

- Suppose that J¹(X) = λ₁x₁ ∂/∂x₁ + λ₂x₂ ∂/∂x₂ + λ₃x₃ ∂/∂x₃, then Lemma 4 assures that its enough to prove that there is a pair of linearly independent vectors M, N ∈ N³ − C₃ satisfying (2).
- Suppose F = (f, g) is a first integral for X, with $f(x) = \sum_{|N| \ge p} a_N x^N$ and $g(x) = \sum_{|N| \ge q} b_N x^N$. From (2) we have $0 = (\lambda_1 n_1 + \lambda_2 n_2 + \lambda_3 n_3) a_N$ for all |N| = p. If there are two distinct $a_N, a_{N'} \ne 0$, then N and N' satisfy the desired condition.
- Reasoning in the same manner for *g* we just have to consider the case $f(x) = a_P x^P + \sum_{|N| \ge p+1} a_N x^N$ and $g(x) = b_P x^P + \sum_{|N| \ge p+1} b_N x^N$ with |P| = p, and $a_P, b_P \ne 0$.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

• Now let $f_1 := \frac{1}{a_P}f - \frac{1}{b_P}g$, then it can be written in the form $f_1(x) = h_1(x^P) + \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$, where $h_1 \in \mathcal{M}$ is a polynomial such that $\tau_1 := \deg(h_1) < q$, where q = |N| is the least natural number such that there exists $c_N \neq 0$ form some $N \notin \langle P \rangle$, where $\langle P \rangle$ denotes the ideal in \mathbb{N}^n generated by the coordinates of P (notice that such q exists, since f and g are transversal off the origin).

- Pick inductively $f_k := f_{k-1} h_{k-1}^{(\tau_{k-1})}(0) \left(\frac{1}{b_p}g\right)^{\tau_{k-1}}$, where $\tau_k := \deg(f_k)$, then after repeating this process a finite number of steps we have $k_0 \in \mathbb{Z}_+$ such that $f_{k_0}(x) = \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$
- Since the set of \mathcal{F}_X -invariant holomorphic functions is a sub-ring of \mathcal{O}_3 , then f_{k_0} is an \mathcal{F}_X -invariant holomorphic function; in particular it satisfies (1). Therefore, it is enough to pick $R \notin \langle P \rangle$ such that |R| = q and $c_R \neq 0$.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

• Now let $f_1 := \frac{1}{a_P}f - \frac{1}{b_P}g$, then it can be written in the form $f_1(x) = h_1(x^P) + \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$, where $h_1 \in \mathcal{M}$ is a polynomial such that $\tau_1 := \deg(h_1) < q$, where q = |N| is the least natural number such that there exists $c_N \neq 0$ form some $N \notin \langle P \rangle$, where $\langle P \rangle$ denotes the ideal in \mathbb{N}^n generated by the coordinates of P (notice that such q exists, since f and g are transversal off the origin).

- Pick inductively $f_k := f_{k-1} h_{k-1}^{(\tau_{k-1})}(0) \left(\frac{1}{b_p}g\right)^{\tau_{k-1}}$, where $\tau_k := \deg(f_k)$, then after repeating this process a finite number of steps we have $k_0 \in \mathbb{Z}_+$ such that $f_{k_0}(x) = \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$
- Since the set of \mathcal{F}_X -invariant holomorphic functions is a sub-ring of \mathcal{O}_3 , then f_{k_0} is an \mathcal{F}_X -invariant holomorphic function; in particular it satisfies (1). Therefore, it is enough to pick $R \notin \langle P \rangle$ such that |R| = q and $c_R \neq 0$.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

• Now let $f_1 := \frac{1}{a_P}f - \frac{1}{b_P}g$, then it can be written in the form $f_1(x) = h_1(x^P) + \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$, where $h_1 \in \mathcal{M}$ is a polynomial such that $\tau_1 := \deg(h_1) < q$, where q = |N| is the least natural number such that there exists $c_N \neq 0$ form some $N \notin \langle P \rangle$, where $\langle P \rangle$ denotes the ideal in \mathbb{N}^n generated by the coordinates of P (notice that such q exists, since f and g are transversal off the origin).

- Pick inductively $f_k := f_{k-1} h_{k-1}^{(\tau_{k-1})}(0) \left(\frac{1}{b_P}g\right)^{\tau_{k-1}}$, where $\tau_k := \deg(f_k)$, then after repeating this process a finite number of steps we have $k_0 \in \mathbb{Z}_+$ such that $f_{k_0}(x) = \sum_{|N|=q, N \notin \langle P \rangle} c_N x^N + \cdots$
- Since the set of \mathcal{F}_X -invariant holomorphic functions is a sub-ring of \mathcal{O}_3 , then f_{k_0} is an \mathcal{F}_X -invariant holomorphic function; in particular it satisfies (1). Therefore, it is enough to pick $R \notin \langle P \rangle$ such that |R| = q and $c_R \neq 0$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Definition

Let $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$. We say that X satisfies condition (*) if there is a real line $L \subset C$ through the origin containing the eigenvalues of X such that one of the connected components $L \setminus \{0\}$ contains a single eigenvalue $\lambda(X)$ of X. In other words, not all the eigenvalues of X belong to the same connected component of $L \setminus \{0\}$.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Lemma

Let $N, M \in \mathbb{N}^3 - C_3$ be two vectors satisfying (2), and let $f(x) = x^N$, $g(x) = x^M$. Then $\operatorname{Sat}(df = 0)$ is transversal to $\operatorname{Sat}(dg = 0)$ if and only if N and M are linearly independent.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

An algebraic characterization of integrable linear vector fields is given by the following result.

Lemma

Any linear vector field of the form $X(x) = mx_1 \frac{\partial}{\partial x_1} + nx_2 \frac{\partial}{\partial x_2} - kx_3 \frac{\partial}{\partial x_3}$, where $(m, n, k) \in \mathbb{Z}^3_+$, has a holomorphic first integral of the form $F(x) = (x^N, x^M)$, where $N, M \in \mathbb{N}^3 - C_3$.

Proof.

From Lemma 7 and the calculations made in order to obtain (1), one can easily check that this is just a matter of finding two linearly independent solutions in $\mathbb{N}^3 - C_3$ for the homogeneous equation mx + ny - kz = 0. Therefore, we just have to pick $x_j := k\widetilde{x}_j$ and $y_j := k\widetilde{y}_j$, j = 1, 2, where $(\widetilde{x}_1, \widetilde{y}_1), (\widetilde{x}_2, \widetilde{y}_2) \in \mathbb{N}^2$ are linearly independent.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

An algebraic characterization of integrable linear vector fields is given by the following result.

Lemma

Any linear vector field of the form $X(x) = mx_1 \frac{\partial}{\partial x_1} + nx_2 \frac{\partial}{\partial x_2} - kx_3 \frac{\partial}{\partial x_3}$, where $(m, n, k) \in \mathbb{Z}^3_+$, has a holomorphic first integral of the form $F(x) = (x^N, x^M)$, where $N, M \in \mathbb{N}^3 - C_3$.

Proof.

From Lemma 7 and the calculations made in order to obtain (1), one can easily check that this is just a matter of finding two linearly independent solutions in $\mathbb{N}^3 - C_3$ for the homogeneous equation mx + ny - kz = 0. Therefore, we just have to pick $x_j := k\tilde{x}_j$ and $y_j := k\tilde{y}_j$, j = 1, 2, where $(\tilde{x}_1, \tilde{y}_1), (\tilde{x}_2, \tilde{y}_2) \in \mathbb{N}^2$ are linearly independent.

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Let $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ be given by

$$X(x) = -\frac{m_1 x_1}{k} (1 + a_1(x)) \frac{\partial}{\partial x_1} - \frac{m_2 x_2}{k} (1 + a_2(x)) \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3}$$

where $m_1, m_2, k \in \mathbb{Z}_+$, $S := (x_1 = x_2 = 0)$ and $\Sigma := (x_3 = 1)$, and $\langle h \rangle = \text{Hol}(\mathcal{F}_X, S, \Sigma)$. We conclude that *h* is resonant.

Finite orbits and periodic maps Closed leaves versus first integrals The main result: stability, flags and first integrals. basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Figure: The lifting of γ along the leaves of \mathcal{F} .

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Now consider the closed loop $\gamma : [0, 1] \longrightarrow S$ given by $\gamma(t) = (0, 0, e^{2\pi i t})$ and let $\overline{\Gamma}_{(x_1, x_2)}(t) = (\Gamma_1(t, x_1, x_2), \Gamma_2(t, x_1, x_2), \gamma(t))$ be its lifting along the leaves of \mathcal{F}_X starting at $(x_1, x_2, 1) \in \Sigma$. In particular, the map $h \in \text{Diff}(\mathbb{C}^2, 0)$ given by $\overline{\Gamma}_{(x_1, x_2)}(1) = (h(x_1, x_2), 1)$ is a generator of $(\mathcal{F}_X, S, \Sigma)$. Since $\overline{\Gamma}_{(x_1, x_2)}(t)$ belongs to a leaf of \mathcal{F}_X , then $\frac{\partial}{\partial t}\overline{\Gamma}_{(x_1, x_2)}(t) = \alpha X(\Gamma_1(t, x_1, x_2), \Gamma_2(t, x_1, x_2), \gamma(t))$. From this vector equation we obtain that $\gamma'(t) = \alpha \gamma(t)$, and thus $\alpha = 2\pi i$. Furthermore

$$\frac{\partial}{\partial t}\Gamma_n = -\frac{2m_j\pi \mathbf{i}}{k}\Gamma_j(\mathbf{1} + \mathbf{a}_j(\Gamma_1, \Gamma_2, \gamma)), \quad j = 1, 2;$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

If we let $\Gamma_n(t, x_1, x_2) = \sum_{i+j\geq 1} c_{i,j}^n(t) x_1^i x_2^j$ and consider the first jet in the variables (x_1, x_2) of the above equations, then

$$(c_{i,j}^n)'(t) = -\frac{2m_j\pi \mathbf{i}}{k}c_{i,j}^n(t), \quad i,j,n-1 \in \{0,1\}.$$
 (3)

Recall that $\Gamma_n(0, x_1, x_2) = x_n$ thus

$$\begin{pmatrix} c_{1,0}^{1}(0) & c_{0,1}^{1}(t) \\ c_{1,0}^{2}(t) & c_{0,1}^{2}(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus $c_{1,0}^2(t) = c_{0,1}^1(t) = 0$, $c_{1,0}^1(t) = \exp(-\frac{2m_1\pi i}{k}t)$ and $c_{0,1}^2(t) = \exp(-\frac{2m_2\pi i}{k}t)$ are the solutions for (3). In particular

$$h'(0,0) = \begin{pmatrix} c_{1,0}^{1}(1) & c_{0,1}^{1}(1) \\ c_{1,0}^{2}(t) & c_{0,1}^{2}(t) \end{pmatrix} = \begin{pmatrix} \exp(-\frac{2m_{1}\pi i}{k}) & 0 \\ 0 & \exp(-\frac{2m_{2}\pi i}{k}) \end{pmatrix}$$
(4)

basic definitions Algebraic criterion Linear vector fields Holonomy and first jet

Therefore, *h* is resonant. Notice that the same above computation shows that if $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ is given by

$$X(x) = -\lambda_1 x_1 (1 + a_1(x)) \frac{\partial}{\partial x_1} - \lambda_2 x_2 (1 + a_2(x)) \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3},$$

thus the holonomy map $h(x_1, x_2)$ has linear part given by

$$h'(0,0) = \begin{pmatrix} \exp(-2\pi i\lambda_1) & 0\\ 0 & \exp(-2\pi i\lambda_2) \end{pmatrix}$$
(5)

In particular, we conclude that if *h* has finite orbits, then necessarily $\lambda_1, \lambda_2 \in \mathbb{Q}$ (indeed, this is quite well-known for one-dimensional germs of diffeomorphisms and one just to consider the restriction of *h* to the coordinates axes x_1 and x_2 to use this case).

Orbits

Germs of diffeomorphisms

Let $G \in \text{Diff}(\mathbb{C}^2, 0)$ and V a neighborhood of the origin where a representative (also denoted by *G*) of the germ *G* is defined. Then we denote by

$$\mathcal{O}^+_V(G,x) = \left\{ G^{\circ(n)}(x): \ G^{\circ(j)}(x) \in V, j=0,\ldots,n \right\}$$

the so called *positive semiorbit* of $x \in V$ by *G*. Analogously, the *negative semiorbit* of $x \in V$ by *G* is the set $\mathcal{O}_V^-(G, x) := \mathcal{O}_V^+(G^{-1}, x)$. The *orbit* of $x \in V$ by *G* is the set $\mathcal{O}_V(G, x) = \mathcal{O}_V^+(G, x) \cup \mathcal{O}_V^-(G, x)$. The cardinality of $\mathcal{O}_V(G, x)$ is denoted by $|\mathcal{O}_V(G, x)|$.

Orbits

Germs of diffeomorphisms

Theorem (Brochero Martínez [4])

Let $G \in \text{Diff}(\mathbb{C}^2, 0)$, then the group generated by G is finite if and only if there exists a neighborhood V of the origin such that $|\mathcal{O}_V(G, x)| < \infty$ for all $x \in V$ and G preserves infinitely many analytic invariant curves at 0.

Using the same arguments as in the one-dimensional case (cf. [10], Proposition 1.1, p. 475-476), one can prove that a finite abelian (e.g., cyclic) subgroup of Diff(\mathbb{C}^n , 0) is always periodic, i.e., it is generated by a periodic (and linearizable) element. Contrasting with the one dimensional case, in greater dimensions the finiteness of the orbits in not enough to ensure the periodicity of the group (cf. [10], Theorem 2, p. 477).

Orbits

Germs of diffeomorphisms

Theorem (Brochero Martínez [4])

Let $G \in \text{Diff}(\mathbb{C}^2, 0)$, then the group generated by G is finite if and only if there exists a neighborhood V of the origin such that $|\mathcal{O}_V(G, x)| < \infty$ for all $x \in V$ and G preserves infinitely many analytic invariant curves at 0.

Using the same arguments as in the one-dimensional case (cf. [10], Proposition 1.1, p. 475-476), one can prove that a finite abelian (e.g., cyclic) subgroup of Diff(\mathbb{C}^n , 0) is always periodic, i.e., it is generated by a periodic (and linearizable) element. Contrasting with the one dimensional case, in greater dimensions the finiteness of the orbits in not enough to ensure the periodicity of the group (cf. [10], Theorem 2, p. 477).

Orbits

Example

Consider the map $G(x, y) = (x + y^2, y)$. The orbits of G are confined in the level sets of f(x, y) = y and are clearly finite. Notice that $\#\mathcal{O}_V(G, (x, y)) \to \infty$ as $y \to 0$, thus G is not periodic nor linearizable. Furthermore, the orbits $\mathcal{O}_V(G, (x, y))$ are far from being stable, since in each line (y = c) the map G acts as a translation.

Proposition

Let $f, g \in \mathcal{O}_2$ be generically transverse germs and $G \in \text{Diff}(\mathbb{C}^2, 0)$ be a complex map germ having finite orbits and preserving the level sets of both f and g. Then G is periodic.

Orbits

Example

Consider the map $G(x, y) = (x + y^2, y)$. The orbits of G are confined in the level sets of f(x, y) = y and are clearly finite. Notice that $\#\mathcal{O}_V(G, (x, y)) \to \infty$ as $y \to 0$, thus G is not periodic nor linearizable. Furthermore, the orbits $\mathcal{O}_V(G, (x, y))$ are far from being stable, since in each line (y = c) the map G acts as a translation.

Proposition

Let $f, g \in \mathcal{O}_2$ be generically transverse germs and $G \in \text{Diff}(\mathbb{C}^2, 0)$ be a complex map germ having finite orbits and preserving the level sets of both f and g. Then G is periodic.

Orbits

Example

Consider the map $G(x, y) = (x + y^2, y)$. The orbits of G are confined in the level sets of f(x, y) = y and are clearly finite. Notice that $\#\mathcal{O}_V(G, (x, y)) \to \infty$ as $y \to 0$, thus G is not periodic nor linearizable. Furthermore, the orbits $\mathcal{O}_V(G, (x, y))$ are far from being stable, since in each line (y = c) the map G acts as a translation.

Proposition

Let $f, g \in \mathcal{O}_2$ be generically transverse germs and $G \in \text{Diff}(\mathbb{C}^2, 0)$ be a complex map germ having finite orbits and preserving the level sets of both f and g. Then G is periodic.

Idea of the proof

Germs of diffeomorphisms

Since *f* and *g* are generically transverse, then one can find a pure meromorphic function $h_o = f_o/g_o$ whose level sets are preserved by *G*. Hence the infinitely many curves $f_o(x, y) - c \cdot g_o(x, y) = 0$ with $c \in (\mathbb{C}, 0)$ pass through the origin and are invariant by *G*. Thus Theorem 9 ensures that *G* is periodic.

Sketch of proof

- Now let us construct h_o. If f/g is already pure meromorphic, then it is enough to pick h_o := f/g.
- Otherwise one has $f = h \cdot g^k$, where $k \in \mathbb{Z}_+$, and h is a germ of holomorphic function not divisible by g. Clearly, h is G-invariant, thus if it has an irreducible component distinct from the irreducible components of g, then h/g must be a G-invariant pure meromorphic function.
- Suppose that the decomposition in irreducible components of g and h are of the form $g = g_1^{p_1} \cdots g_n^{p_n}$ and $h = g_1^{q_1} \cdots g_n^{q_n}$. Since h is not divisible by g, then there must be $j_0 \in \{1, \dots, n\}$ such that $q_{j_0} < p_{j_0}$. If there is also $j_1 \in \{1, \dots, n\}$ such that $q_{j_1} > p_{j_1}$, then h/g is a pure meromorphic *G*-invariant function.

Sketch of proof

- Now let us construct h_o. If f/g is already pure meromorphic, then it is enough to pick h_o := f/g.
- Otherwise one has *f* = *h* ⋅ *g^k*, where *k* ∈ Z₊, and *h* is a germ of holomorphic function not divisible by *g*. Clearly, *h* is *G*-invariant, thus if it has an irreducible component distinct from the irreducible components of *g*, then *h*/*g* must be a *G*-invariant pure meromorphic function.
- Suppose that the decomposition in irreducible components of g and h are of the form $g = g_1^{p_1} \cdots g_n^{p_n}$ and $h = g_1^{q_1} \cdots g_n^{q_n}$. Since h is not divisible by g, then there must be $j_0 \in \{1, \dots, n\}$ such that $q_{j_0} < p_{j_0}$. If there is also $j_1 \in \{1, \dots, n\}$ such that $q_{j_1} > p_{j_1}$, then h/g is a pure meromorphic *G*-invariant function.

Sketch of proof

- Now let us construct h_o. If f/g is already pure meromorphic, then it is enough to pick h_o := f/g.
- Otherwise one has *f* = *h* ⋅ *g^k*, where *k* ∈ Z₊, and *h* is a germ of holomorphic function not divisible by *g*. Clearly, *h* is *G*-invariant, thus if it has an irreducible component distinct from the irreducible components of *g*, then *h*/*g* must be a *G*-invariant pure meromorphic function.
- Suppose that the decomposition in irreducible components of g and h are of the form $g = g_1^{p_1} \cdots g_n^{p_n}$ and $h = g_1^{q_1} \cdots g_n^{q_n}$. Since h is not divisible by g, then there must be $j_0 \in \{1, \dots, n\}$ such that $q_{j_0} < p_{j_0}$. If there is also $j_1 \in \{1, \dots, n\}$ such that $q_{j_1} > p_{j_1}$, then h/g is a pure meromorphic *G*-invariant function.

Sketch of proof

Germs of diffeomorphisms

• From now on we suppose that $q_j \leq p_j$ for all j = 1, ..., n with at least one $j_0 \in \{1, \dots, n\}$ such that $q_{j_0} < p_{j_0}$. If there is $j_1 \in \{1, \dots, n\}$ such that $q_{j_1} = p_{j_1}$, then after reordering the indexes (if necessary) we may suppose that: (i) $q_i < p_i$ for all $i = 1, \dots, n_0$; (ii) $q_i = p_i$ for all $i = n_0 + 1, \dots, n$; for some $n_0 \in \{1, \dots, n-1\}$. Then $\overline{h} := g/h = g_1^{p_1 - q_1} \dots g_{n_0}^{p_{n_0} - q_{n_0}}$ is a *G*-invariant germ of a holomorphic function. Now, let $s_1 := [p_1/(p_1 - q_1)] + 1$ (where [x] denotes the integer part of $x \in \mathbb{R}$), then a straightforward calculation shows that g/\overline{h}^{s_1} is a pure meromorphic function.

Sketch of proof

Germs of diffeomorphisms

• Hereafter we suppose that $q_j < p_j$ for all j = 1, ..., n. Recall that the Euclid's algorithm of a pair of positive integers (p, q), p > q, is the sequence of pairs of positive integers $\{(p_j, q_j)\}_{j=1}^{n+1}$ given by: (1) $(p_{j+1}, q_{j+1}) := (p, q)$; (2) $p_j = q_j \cdot r_j + s_j$, where $r_j := [p/q]$ and $s_j < q_j$; (3) $(p_{j+1}, q_{j+1}) := (q_j, r_j)$; and (4) $s_n > 0$ and $s_{n+1} = 0$. This is called the Euclid's sequence of the pair (p, q).

Sketch of proof

Germs of diffeomorphisms

• For simplicity, suppose that g and h have only two irreducible components, say $g = f^p(\overline{f})^{\overline{p}}$ and $h = f^q(\overline{f})^{\overline{q}}$, and let $\{(p_j, q_j)\}_{j=1}^{n+1}$ and $\{(\overline{p}_j, \overline{q}_j)\}_{j=1}^{n+1}$ be the Euclid's sequence of (p, q) and $(\overline{p}, \overline{q})$, respectively. If $r_1 = [p_1/q_1] < [\overline{p}_1/\overline{q}_1] = \overline{r}_1$, then $p_1 - (r_1 + 1)q_1 < 0$ and $\overline{p}_1 - (\overline{r}_1 + 1)\overline{q}_1 \ge 0$. If $\overline{p}_1 - (\overline{r}_1 + 1)q_1 \neq 0$, then g/h^{r_1+1} is a *G*-invariant germ of a pure meromorphic function, otherwise $g/h^{r_1+1} = 1/f^{(r_1+1)q_1-p_1}$ and $g \cdot (g/h^{r_1+1})^{p_1}$ is a *G*-invariant germ of a pure meromorphic function.

Sketch of proof

Germs of diffeomorphisms

• Arguing inductively along the Euclid's sequences of (p, q) and $(\overline{p}, \overline{q})$ one can always construct a *G*-invariant pure meromorphic function unless $r_j = \overline{r}_j$ for all $j = 1, \dots, n+1$. But this means that $(p, q) = (\alpha s_n, \beta s_n)$ and $(\overline{p}, \overline{q}) = (\alpha \overline{s}_n, \beta \overline{s}_n)$ for some $\alpha, \beta \in \mathbb{Z}_+$. Therefore *g*, *h*, and *f* are powers of the same holomorphic function $f^{s_n}(\overline{f})^{\overline{s}_n}$, thus *f* and *g* cannot be generically transverse. A contradiction! The reasoning in the case of many irreducible factors is analogous, being in fact a consequence of the above reasoning.

Germs of diffeomorphisms

A straightforward consequence is the following:

Corollary

Let $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ and S_X be the distinguished axis of X. Suppose that $\mathcal{F}(X)$ admits a meromorphic first integral, then the holonomy group $\text{Hol}(\mathcal{F}(X), S_X, \Sigma)$ is periodic.

Germs of diffeomorphisms

A straightforward consequence is the following:

Corollary

Let $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ and S_X be the distinguished axis of X. Suppose that $\mathcal{F}(X)$ admits a meromorphic first integral, then the holonomy group $\text{Hol}(\mathcal{F}(X), S_X, \Sigma)$ is periodic.

Germs of diffeomorphisms

Non periodic groups with finite orbits

Example

Blowing up $G = (g_1, g_2) = (x + y^2, y)$ at the origin one has

$$\widetilde{G}(t,x)=(t-t^3x+t^5x^2-t^7x^3+\cdots,x+tx)$$

whose orbits are finite and confined in the level sets of $\tilde{f}(t, x) = tx$ (In fact, G acts in these level sets of \tilde{f} in some sort of translation whose orbits increase in cardinality as $\tilde{f}(t, x) \to 0$). From Proposition 11 G does not preserve the level sets of a couple of generically transverse functions $f, g \in \mathcal{O}_2$.

Non periodic holonomy with finite orbits

Example

Let
$$X(x) = -[x_1 - x_2^2(x_3)^2/2\pi i] \frac{\partial}{\partial x_1} - 3x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3}$$
, then $S := \{x_1 = x_2 = 0\}$ is invariant by X and the holonomy of $\mathcal{F}(X)$ with respect to S evaluated at $\Sigma = (x_3 = 1)$ has the form

$$h(x_1, x_2) = (x_1 + x_2^2, x_2).$$

▲口 ▶ ▲厨 ▶ ▲臣 ▶ ▲臣 ▶ ▲ 団 ▶ ▲

Non periodic holonomy with finite orbits

Completing the above example we obtain:

Example

Consider the vector field $X(x, y, z) = -[x - \frac{1}{2\pi i}y^2 z^2]\frac{\partial}{\partial x} - 3y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$, after one blow up along the *z*-axis one has

$$\pi^* X(t, x, z) = -x(1 - \frac{1}{2\pi i}t^2 x z^2) \frac{\partial}{\partial x} - t(2 - t^2 x z^2) \frac{\partial}{\partial x_2} + z \frac{\partial}{\partial z}$$

which has an isolated singularity at the origin, and whose holonomy with respect to the *z*-axis is precisely the map \widetilde{G} in Example 13. Thus it satisfies condition (*) and has all leaves closed but does not admit a first integral in the sense of Definition 1.

Non periodic holonomy with finite orbits

Completing the above example we obtain:

Example

Consider the vector field $X(x, y, z) = -[x - \frac{1}{2\pi i}y^2 z^2]\frac{\partial}{\partial x} - 3y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$, after one blow up along the *z*-axis one has

$$\pi^* X(t, x, z) = -x(1 - \frac{1}{2\pi i}t^2 x z^2) \frac{\partial}{\partial x} - t(2 - t^2 x z^2) \frac{\partial}{\partial x_2} + z \frac{\partial}{\partial z}$$

which has an isolated singularity at the origin, and whose holonomy with respect to the *z*-axis is precisely the map \tilde{G} in Example 13. Thus it satisfies condition (\star) and has all leaves closed but does not admit a first integral in the sense of Definition 1.

We consider a germ $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ satisfying condition (*).

Definition (stability)

The germ X is *transversely stable* with respect to S_X if for any representative X_U of the germ X, defined in an open neighborhood U of the origin, any open section $\Sigma \subset U$ transverse to S_X with $\Sigma \cap S_X = \{q_{\Sigma}\} \neq \{0\}$, and any open set $q_{\Sigma} \in V \subset \Sigma$ there is an open subset $q_{\Sigma} \in W \subset V$ such that all orbits of X_U through W intersect Σ only in V.

Lemma

Let $G \in \text{Diff}(\mathbb{C}^2, 0)$ be represented by the map $G: W \to V$, where $W \subset V$ are open neighborhoods of the origin with compact closure. Suppose G has finite orbits with stable positive semiorbit, i.e., there are W and V as above with $W \subset V$ and satisfying $G^{\circ(n)}(x) \subset V$ for all $x \in W$ and $n \in \mathbb{Z}_+$. Then G is periodic, i.e., there is $p \in \mathbb{Z}_+$ such that $G^{\circ p} = \text{Id}$.

Theorem

Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$. Then the following conditions are equivalent:

- $\mathcal{F}(X)$ has a holomorphic first integral.
- X satisfies condition (*), the leaves of F(X) are closed off the origin and transversely stable with respect to S_X.

Corollary

Let $X, Y \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ be generic germs of holomorphic vector fields, both satisfying condition (*). Assume that X and Y are topologically equivalent. Then X has a holomorphic first integral if and only if Y admits a holomorphic first integral.

Theorem

Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$. Then the following conditions are equivalent:

- $\mathcal{F}(X)$ has a holomorphic first integral.
- X satisfies condition (*), the leaves of F(X) are closed off the origin and transversely stable with respect to S_X.

Corollary

Let $X, Y \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ be generic germs of holomorphic vector fields, both satisfying condition (*). Assume that X and Y are topologically equivalent. Then X has a holomorphic first integral if and only if Y admits a holomorphic first integral.

Theorem

Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ satisfies condition (\star) and let S_X be the distinguished axis of X. Then the following conditions are equivalent:

- The leaves of F(X) are closed off the origin and transversely stable with respect to S_X;
- Solution $\mathcal{F}(X), S_X, \Sigma$ has finite orbits and is (topologically) stable;
- Hol($\mathcal{F}(X), S_X, \Sigma$) is periodic;
- $\mathcal{F}(X)$ has a holomorphic first integral.
- The leaves of F(X) are closed off the origin and there is an adapted flag (F(X), 3(ω));
- The leaves of F(X) are closed off the origin and there is a flag F(X) ⊂ F(ω) such that F(ω) is a Kupka component of radial type.

Theorem

Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^3, 0))$ satisfies condition (\star) and let S_X be the distinguished axis of X. Then the following conditions are equivalent:

- The leaves of F(X) are closed off the origin and transversely stable with respect to S_X;
- **2** Hol($\mathcal{F}(X), S_X, \Sigma$) has finite orbits and is (topologically) stable;
- Hol($\mathcal{F}(X), S_X, \Sigma$) is periodic;
- $\mathcal{F}(X)$ has a holomorphic first integral.
- The leaves of F(X) are closed off the origin and there is an adapted flag (F(X), ξ(ω));
- The leaves of $\mathcal{F}(X)$ are closed off the origin and there is a flag $\mathcal{F}(X) \subset \mathfrak{F}(\omega)$ such that $\mathfrak{F}(\omega)$ is a Kupka component of radial type.

- Marco Brunella. A global stability theorem for transversely holomorphic foliations. Ann. Global Anal. Geom. 15 (1997), no. 2, 179–186.
- Marco Brunella. Inexistence of invariant measures for generic rational differential equations in the complex domain. Bol. Soc. Mat. Mexicana (3), 2006.
- Marco Brunella; Marcel Nicolau. Sur les hypersurfaces solutions des équations de Pfaff. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 9, 793–795.
- F.-E. Brochero-Martinez. Groups of germs of analytic diffeomorphisms in (ℂ², 0). Journal of Dynamical and Control Systems, Vol. 9, No. 1, 2003, 1-32.
- W. Burnside. *On criteria for the finiteness of the order of a group of linear substitutions*, Proc.London Math. Soc. (2) 3 (1905), 435-440.

- Claude Godbillon. Feuilletages: Études géométriques. Progress in Mathematics, 98. Birkhäuser Verlag, Basel, 1991. xiv + 474 pp.
- E. Ghys, *Holomorphic Anosov systems*. Invent. Math. 119, 585-614 (1995).
- E. Ghys. À propos d'un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes. Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 175–180.
- Jean-Pierre Jouanolou. *Équations de Pfaff algèbriques*; Lecture Notes in Math. 708, Springer-Verlag, Berlin, 1979.
- J.-F. Mattei & R. Moussu, *Holonomie et intégrales premiéres*, Ann. Sci. École Norm. Sup. (4) **13** (1980), 469–523.
- Fábio Santos; Bruno Scardua. *Stability of complex foliations transverse to fibrations*, to appear in Proceedings of the American Mathematical Society.

- Georges Reeb. *Variétés feuilletées, feuilles voisines*; C.R.A.S. Paris 224 (1947), 1613-1614.
- I. Schur. *Über Gruppen periodischer substitutionen*, Sitzungsber. Preuss. Akad. Wiss. (1911), 619–627.
- B. Scárdua; Complex Projective Foliations Having Subexponential Growth, Indagationes Math. N.S. 12 (3) pp. 293-302 Sept. 2001.
- B. Azevedo Scárdua, *On the existence of stable compact leaves for transversely holomorphic foliations*, pre-print 2011, submitted, arXiv:1204.0095v1 [math.GT].
- B. Azevedo Scárdua; Integration of complex differential equations. Journal of Dynamical and Control Systems, issue 1, vol. 5, pp.1-50, 1999.