Topology of Exceptional Orbit Hypersurfaces of Prehomogeneous Spaces

James Damon

14th International Workshop on Real and Complex Singularities July 2016

Perspective of Isolated Hypersurface Singularities

Topology of Milnor Fibration, Link, and Complement $f : \mathbb{C}^{n+1}, 0 \subset \mathbb{C}, 0, X_0 = f^{-1}(0)$ of dimension *n*:

Milnor Fibration: $\mathcal{X} = f^{-1}(S^1_{\delta}) \cap B_{\varepsilon}(0) \to S^1_{\delta}$, for $0 < \delta << \varepsilon$

- Uses Morse theory to determine topology
- structure of Milnor Fiber: (n − 1)-connected and ≃ bouquet of n-spheres ("compact model"),
- algebraic formula for Milnor number: $\mu = \text{dimension Milnor}$ algebra
- Link L(X₀) = X₀ ∩ S_ε²ⁿ⁺¹ (n − 2) -connected (2n − 1)-dim compact manifold ≃ boundary of closed Milnor fiber
- monodromy + Wang sequence to relate link and Milnor fiber

Geometry of Milnor Fiber

- intersection pairing
- cohomology via relative deRham complex
- monodromy and Gauss-Manin connection
- Mixed Hodge Structure
- relation with deformation theory and resolutions

Nonisolated Singularities from Perspective of Isolated Singularities

Theorem (Kato-Matsumoto): If dim (sing(X)) = k, then Milnor fiber is (n - k - 1)-connected. Is the Milnor fiber \simeq bouquet of spheres?

Depends on properties of $\Sigma = \operatorname{sing}(X)$ and the transverse types of f on Σ (Siersma, Pellikan, Tibar, Nemethi, Zaharia).

- Σ an ICIS of dim = 1: If f has transverse type A_1 (Siersma) then Milnor fiber is homotopy equivalent to a bouquet of S^n 's and possibly one S^{n-1} .
- Σ an ICIS of dim = 2 If f has transverse type A₁ off curve C in Σ, Milnor fiber is homotopy equivalent to a bouquet of Sⁿ 's and possibly one Sⁿ⁻¹ or Sⁿ⁻² (Zaharia and Nemethi).
- Additional results for $\dim \Sigma \leq 2$ and different transverse types: (Siersma, Pellikan, Tibar, Nemethi, Zaharia, Van Straten, etc)

Motivation for Nonisolated Singularities

Nonisolated singularities arising as "nonlinear sections" of singularities defined by a holomorphic germ

$$f_0: \mathbb{C}^n, 0 \longrightarrow \mathbb{C}^N, 0 \supset \mathcal{V}, 0$$
(1)

(or more generally $f_0: X, 0 \to \mathbb{C}^N$, 0 for analytic germ X, 0). The pull-back variety $\mathcal{V}_0 = f_0^{-1}(\mathcal{V})$ is the "singularity" defined by f_0 under $\mathcal{K}_{\mathcal{V}}$ -equivalence of f_0 .

Examples: Discriminants, Bifurcation Sets, Hyperplane Arrangements, Nonlinear Arrangements, Matrix Singularities, Special Classes of Singularities (e.g. Gorenstein and Cohen-Macaulay singularities), Quiver Representation Discriminants. Let $\rho: G \to GL(V)$ be a complex representation of a (connected) complex linear algebraic group G with an open orbit \mathcal{U} . Then, V is called a prehomogeneous (vector) space (due to Sato). The complement $\mathcal{E} = V \setminus \mathcal{U}$ is the variety of orbits of positive codimension, which we call exceptional orbit variety.

Sato and Kimura: Classification of prehomogeneous spaces arising from irreducible representations of semisimple algebraic groups (for applications to harmonic analysis); \mathcal{E} called the "singular set".

Actions of $GL_n(\mathbb{C})$ on the spaces of $m \times m$ matrices which are general (under left multiplication), or symmetric or skew-symmetric (m even) via $B \cdot A = BAB^T$. The exceptional orbit varieties are determinant varieties: hypersurfaces defined by det : $M \to \mathbb{C}$:

$$\mathcal{D}_m^{sy}$$
 for $M = Sym_m$; \mathcal{D}_m for $M = M_{m,m}$; and \mathcal{D}_m^{sk} for $M = Sk_m$, $(m = 2k)$ defined by $Pf : Sk_m \to \mathbb{C}$.

Equidimensional Representations: $\dim G = \dim V$. Then, \mathcal{E} is a hypersurface. Examples:

- Reductive groups: include quivers of finite representation type. The exceptional orbit variety is called the the "discriminant". These are linear free divisors (Buchweitz and Mond)
- ii) Solvable linear algebraic groups: block representations criteria for exceptional orbit varieties being free or free* divisors.
 Examples: (modified) Cholesky factorizations (D'and B. Pike)
- General linear algebraic groups formed as extensions of reductive groups by solvable linear algebraic groups: block representations yielding exceptional orbit varieties free or free* divisors.

Exceptional orbit varieties defined by block representations of solvable linear algebraic groups arising from modified Cholesky factorizations.

ε	Defining Equation for ${\cal E}$				
25V	$\overline{\mathbf{T}}$				
\mathcal{E}_m^{sy}	$\prod_{k=1}^{m} \det(A^{(k)})$				
\mathcal{E}_m	$\prod_{k=1}^m \det(A^{(k)}) \cdot \prod_{k=1}^{m-1} \det(\hat{A}^{(k)})$				
$\mathcal{E}_{m-1,m}$	$\frac{\prod_{k=1}^{m} \det(A^{(k)}) \cdot \prod_{k=1}^{m-1} \det(\hat{A}^{(k)})}{\prod_{k=1}^{m-1} \det(A^{(k)}) \cdot \prod_{k=1}^{m-1} \det(\hat{A}^{(k)})}$				
\mathcal{E}_m^{sk}	$\prod_{k=1}^{m-2} \det\left(\hat{\hat{A}}^{(k)}\right) \cdot \prod_{k=2}^{m} \operatorname{Pf}_{\{\epsilon(k),\dots,k\}}(A)$				

Examples of Exceptional Orbit Varieties

•
$$\mathcal{E}_{2}^{sy}$$
 : $x \cdot (xz - y^{2})$
• \mathcal{E}_{3}^{sy} : $x \cdot (xw - y^{2}) \cdot (xu^{2} + vy^{2} + wz^{2} - xwv - 2zyu)$
 $\begin{pmatrix} x & y & z \\ y & w & u \\ z & u & v \end{pmatrix}$

•
$$\mathcal{E}_2$$
: $xy \cdot (xw - yz)$

•
$$\mathcal{E}_{2,3}$$
: $xy \cdot (xv - yu) \cdot (yw - zv)$

• D_4 quiver discriminant: $(xw - zu) \cdot (xv - yu) \cdot (yw - zv)$

• Cholesky factorization: $x \cdot (xw - yv + zu)$

$$\begin{pmatrix} 0 & x & y & z \\ -x & 0 & u & v \\ -y & -u & 0 & w \\ -z & -v & -w & 0 \end{pmatrix}$$

- i) reversing the usual approach: begin with the complement and deduce the topology of the link and Milnor fiber.
- ii) replacing the local Milnor fiber by a global Milnor fiber, which is a smooth affine hypersurface that has a "model complex geometry" resulting from the transitive action of an associated linear algebraic group, yielding as a deformation retract a compact submanifold;
- iii) using the relation between the two algebraic group actions and the topology of maximal compact subgroups to deduce the cohomological triviality of an associated fibration of the groups;
- iv) tools: Hopf structure theorem, Cartan's results on classical symmetric spaces, Wang sequence, Leray-Hirsch theorem, homotopy long exact sequence of fibration, Bott periodicity theorem;
- v) using the preceding to determine the topology: (co)homology and homotopy groups of the Milnor fiber, link, and complement

A special prehomogeneous space is a prehomogeneous space with ${\mathcal E}$ a hypersurface.

Lemma 1

The Milnor fibration of $(\mathcal{E}, 0)$ is diffeomorphic to the global Milnor fibration $f|E: E \to S^1$, where $E = f^{-1}(S^1)$, with fiber $F = f^{-1}(1)$. This is the restriction of the fibration $f: V \setminus \mathcal{E} \to \mathbb{C}^*$ to $S^1 \subset \mathbb{C}^*$, and the inclusion $E \subset V \setminus \mathcal{E}$ is a homotopy equivalence.

Lemma 2

If G and the isotropy subgroup H of $v_0 \in U$ have maximal compact subgroups K, resp. L, then $V \setminus \mathcal{E}$ is homotopy equivalent to K/L. Hence,

 $H^*(V \setminus \mathcal{E}) \simeq H^*(K/L).$

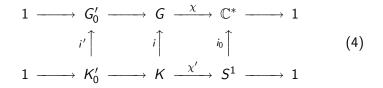
For a special prehomogeneous space $\rho : G \to \operatorname{GL}(V)$ with \mathcal{E} the exceptional orbit hypersurface, let h = 0 be an irreducible defining equation for \mathcal{E} . Then, G acts on $\mathbb{C} \simeq \mathbb{C} < h >$ with character χ_0 . Let $G' = \operatorname{ker}(\chi_0)$ and G'_0 the connected component of G'.

Lemma In the preceding situation, χ_0 is non-trivial and induces by a lifting an exact sequence

$$1 \longrightarrow G'_0 \longrightarrow G \xrightarrow{\chi} \mathbb{C}^* \longrightarrow 1$$
 (3)

where G' and G'_0 are linear algebraic groups with $\dim_{\mathbb{C}} G'_0 = \dim_{\mathbb{C}} G - 1$ and $\operatorname{rank}(G'_0) = \operatorname{rank}(G) - 1$. Moreover, if G is reductive, respectively solvable, then so is G'_0 reductive, respectively solvable.

We can replace the linear algebraic groups by their maximal compact subgroups and obtain the exact rows:



The following hold:

- i) each vertical arrow is a homotopy equivalence;
- ii) G'_0 acts transitively on the global Milnor fiber F; and
- iii) By a "numerical criterion", the fibration $K'_0 \hookrightarrow K \to S^1$ is cohomologically trivial.

Proposition 3

For a prehomogeneous space defined by the representation $\rho: G \to \operatorname{GL}(V)$ with exceptional orbit variety \mathcal{E} a hypersurface, there is a connected codimension one algebraic subgroup G'_0 of G which acts transitively on the global Milnor fiber F, with isotropy subgroup H' so that (F, G'_0, H') defines a model complex geometry on F (in the sense of Thurston).

- i) In the case of determinantal hypersurfaces, this model is simply connected, and
- ii) in the equidimensional case, G'_0 is a finite regular covering space of F with group of covering transformations H'.

Proposition

For the fibration $F \hookrightarrow E \to S^1$, with F connected and \mathbf{k} a field of characteristic 0, the following are equivalent.

- i) The fibration is cohomologically trivial (i.e. monodromy acts trivially on H*(F; k)).
- ii) there is an isomorphism of graded vector spaces.

$$\begin{aligned} H^*(E;\mathbf{k}) &\simeq \Lambda^* \mathbf{k} \langle s_1 \rangle \otimes H^*(F;\mathbf{k}) \\ &\simeq H^*(F;\mathbf{k}) \oplus \mathbf{k} \langle s_1 \rangle \otimes H^*(F;\mathbf{k}) \,. \end{aligned}$$

iii)

$$\dim_{\mathbf{k}} H^*(E; \mathbf{k}) = 2 \dim_{\mathbf{k}} H^*(F; \mathbf{k}).$$
(6)

Moreover, if the preceding hold then (5) is an isomorphism of graded $\Lambda^* \mathbf{k} \langle s_1 \rangle$ -modules, where the exterior algebra $\Lambda^* \mathbf{k} \langle s_1 \rangle$ is on one generator s_1 of degree 1.

Topology of the exceptional orbit variety ${\cal E}$

Proposition Suppose $\rho : G \to GL(V)$ is a representation which belongs to the special class of prehomogeneous spaces.

i) Cohomology of Milnor fiber F:

If the global Milnor fibration is cohomologically trivial, then

$$H^*(F; \mathbf{k}) \simeq H^*(E; \mathbf{k}) / (\mathbf{k} \langle s_1 \rangle \smile H^*(E; \mathbf{k}))$$

where as graded vector spaces,

$$H^*(E;\mathbf{k}) \simeq H^*(F;\mathbf{k}) \oplus (\mathbf{k}\langle s_1 \rangle \otimes H^*(F;\mathbf{k}));$$

ii) Cohomology of the Complement $V \setminus \mathcal{E}$:

$$H^*(V \setminus \mathcal{E}; \mathbf{k}) \simeq H^*(K/L; \mathbf{k});$$

iii) Cohomology of the Link $L(\mathcal{E})$: If K/L is orientable, then as graded vector spaces $\widetilde{H}^*(L(\mathcal{E}); \mathbf{k}) \simeq H^*(\widetilde{K/L}; \mathbf{k}) [2N - 2 - \dim_{\mathbb{R}} K/L];$ For G a connected compact Lie group, $H \subseteq G$ a closed subgroup, $char(\mathbf{k}) = 0$.

Let
$$r = \frac{rank(H)}{rank(G)}$$
 $0 \le r \le 1$

The structure of $H^*(G/H; \mathbf{k})$

1) If r = 0, then H is finite. By the Hopf structure theorem

$$H^*(G/H; \mathbf{k}) \simeq H^*(G; \mathbf{k})^H \simeq H^*(G; \mathbf{k}) \simeq \Lambda^* \mathbf{k} \{e_1, \dots, e_m\}$$

where m = rank(G) and the e_i have odd degree.

- If r = 1, then rank(H) = rank(G), and G/H is a generalized flag manifold and H*(G/H; k) ~ k [a₁,..., a_m]/I, a quotient of a polynomial algebra by an ideal I of relations on a set of the characteristic classes a_i (of even degree).
- For 0 < r ≈ ¹/₂ < 1, H*(G/H; ℝ) isomorphic to algebra of closed left invariant forms on g, which annihilate h and are invariant under Ad(H).

Theorem: The Milnor fibers of the determinant varieties are homogeneous spaces homotopy equivalent to classical symmetric spaces.

Determinant	Milnor Fiber	Symmetric	$H^*(F,\mathbf{k})$
Variety	F	Space	
\mathcal{D}_m^{sy}	$SL_m(\mathbb{C})/SO_m(\mathbb{C})$	SU_m/SO_m	$\Lambda^* \mathbf{k} \{ e_5, e_9, \dots, e_{4k+1} \}$
(m = 2k+1)			
\mathcal{D}_m^{sy}	$SL_m(\mathbb{C})/SO_m(\mathbb{C})$	SU_m/SO_m	$\Lambda^* \mathbf{k} \{ e_5, e_9, \ldots, e_{4k-3} \}$
(m = 2k)			$\{1, e_{2k}\}$
\mathcal{D}_m	$SL_m(\mathbb{C})$	SUm	$\Lambda^*\mathbf{k}\{e_3, e_5, \ldots, e_{2m-1}\}$
$\mathcal{D}_m^{sk}, m = 2k$	$SL_{2k}(\mathbb{C})/Sp_k(\mathbb{C})$	SU_{2k}/Sp_k	$\Lambda^*\mathbf{k}\{e_5, e_9, \ldots, e_{4k-3}\}$

Theorem: The cohomology of the complements and links of determinant varieties are given by the following table, where for the link the cohomology $H^*(K/L, \mathbf{k})$ is upper truncated and shifted.

Determinant	Complement	$H^*(Mackslash \mathcal{D}, \mathbf{k}) \simeq$	Shift
Variety	$Mackslash \mathcal{D}$	$H^*(K/L,{f k})$	
\mathcal{D}_m^{sy}	$GL_m(\mathbb{C})/O_m(\mathbb{C})$	$\Lambda^* \mathbf{k} \langle e_1, e_5, \dots, e_{2m-1} \rangle$	$\binom{m+1}{2} - 2$
(m = 2k+1)	$\sim U_m/O_m(\mathbb{R})$		
\mathcal{D}_m^{sy}	$GL_m(\mathbb{C})/O_m(\mathbb{C})$	$\Lambda^* \mathbf{k} \langle e_1, e_5, \dots, e_{2m-3} \rangle$	$\binom{m+1}{2}+$
(m = 2k)	$\sim U_m/O_m(\mathbb{R})$		m - 2
\mathcal{D}_m	$GL_m(\mathbb{C}) \sim U_m$	$\Lambda^* \mathbf{k} \langle e_1, e_3, \dots, e_{2m-1} angle$	$m^2 - 2$
\mathcal{D}_m^{sk}	$\mathit{GL}_{2k}(\mathbb{C})/\mathit{Sp}_k(\mathbb{C})$	$\Lambda^* \mathbf{k} \langle e_1, e_5, \dots, e_{2m-3} \rangle$	$\binom{m}{2} - 2$
(m = 2k)	$\sim U_{2k}/Sp_k$		

Numerical Criterion for cohomological triviality of monodromy is satisfied for all cases except \mathcal{D}_m^{sy} for *m* even.

Remark: The same method applies to the link and complement of the variety of singular $m \times n$ matrices $\mathcal{V}_{m,n} \subset M_{m,n}$ for m > n (even though they are not complete intersections or do not have Milnor fibers).

Theorem: The cohomology of the complements and links of determinant varieties $\mathcal{V}_{m,n}$ are given by:

$$H^*(M_{m,n} \setminus \mathcal{V}_{m,n}, \mathbf{k}) \simeq \Lambda^* \mathbf{k} \{ e_{2(m-n)+1}, e_{2(m-n)+3}, \dots, e_{2m-1} \}$$

where for the link the cohomology $H^*(M_{m,n} \setminus \mathcal{V}_{m,n}, \mathbf{k})$ is upper truncated and shifted by $n^2 - 2$ (as a graded vector space).

This follows because $M_{m,n} \setminus \mathcal{V}_{m,n}$ is homotopy equivalent to the Stiefel manifold $V_n(\mathbb{C}^m)$ of ordered sets of *n* orthonormal vectors in \mathbb{C}^m . The cohomology of these have been computed by a combination of results involving Whitehead, Borel, and C. E. Miller.

Theorem: The homotopy groups of the Milnor fibers up to the end of the stable range are as follows.

$$\pi_j(F_m) \simeq \pi_j(SU_m) \simeq \pi_j(\mathbb{SU})$$
 for $j < 2m$

ii)

i)

 $\pi_j(F_m^{sy}) \simeq \pi_j(SU_m/SO_m) \simeq \pi_j(\mathbb{SU}/\mathbb{SO})$ for j < m-1iii) for m = 2k

 $\pi_j(F_m^{sk}) \simeq \pi_j(SU_{2k}/Sp_k) \simeq \pi_j(\mathbb{SU}/\mathbb{S}p)$ for j < 4k - 2where the stable homotopy groups are given in Table.

$\pi_j(\mathbb{G}/\mathbb{H})$										
<i>j</i> =	0	1	2	3	4	5	6	7	8	9
SU	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
SU/SO	0	0	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}
$\mathbb{SU}/\mathbb{S}p$	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}

For an equidimensional representation $\rho : G \to \operatorname{GL}(V)$ with G a connected linear algebraic group G, having maximal compact subgroup K. For $x_0 \in U$, an open orbit of ρ , the isotropy subgroup H is finite.

For a field **k** of characteristic 0, by the Hopf structure theorem,

$$H^*(K; \mathbf{k}) = \Lambda^* \mathbf{k} \langle s_1, s_2, \dots, s_k \rangle .$$
 (7)

where s_j are classes of odd degree q_j and rank(K) = k.

Topology in the Equidimensional Case

Theorem: *Topology of the complement:*

$$H^*(V \setminus \mathcal{E}; \mathbf{k}) \simeq H^*(K; \mathbf{k}) = \Lambda^* \mathbf{k} \langle s_1, s_2, \dots, s_k \rangle$$
 (8)

In addition, $\pi_i(V \setminus \mathcal{E}) \simeq \pi_i(K)$ for i > 1; and there is a short exact sequence

$$1 \longrightarrow \pi_1(K) \longrightarrow \pi_1(V \setminus \mathcal{E}) \longrightarrow H \longrightarrow 1$$
 (9)

Topology of the Link: As graded vector spaces $\widetilde{H}_*(L(\mathcal{E}); \mathbf{k}) \simeq \widetilde{H}^*(L(\mathcal{E}); \mathbf{k}) \simeq \widetilde{\Lambda^* \mathbf{k}} \langle s_1, s_2, \dots, s_k \rangle [2N - 2 - \dim_{\mathbb{R}} K]$ where $N = \dim_{\mathbb{C}} V = \dim_{\mathbb{C}} G$

Topology in the Equidimensional Case (cont)

Topology of the Milnor Fiber:

The Milnor fibration is cohomologically trivial (by the numerical criterion) and

$$H^*(F; \mathbf{k}) \simeq \Lambda^* \mathbf{k} < e_2, \ldots, e_k > .$$

Here $e_j = i^*(s_j)$, where $i : F \hookrightarrow V \setminus \mathcal{E}$ is the inclusion. Moreover, the homotopy groups of F are given by $\pi_j(F) \simeq \pi_j(G)$ for $j \ge 2$; and there is the exact sequence

$$1 \longrightarrow \pi_1(G'_0) \longrightarrow \pi_1(F) \longrightarrow H \longrightarrow 1$$
 (10)

where H is the isotropy group of G'_0 for a point in F and $\pi_1(G'_0)$ is in the exact sequence

$$1 \longrightarrow \pi_1(G'_0) \longrightarrow \pi_1(G) \longrightarrow \mathbb{Z} \longrightarrow 1$$
 (11)

Special Case: G solvable Theorem (D'and B. Pike):

i) $V \setminus \mathcal{E}$ is a $K(\pi, 1)$ with π a finite extension of \mathbb{Z}^k by the finite isotropy group H of a point in \mathcal{U} ; and

$$H^*(V \setminus \mathcal{E}; \mathbf{k}) = \Lambda^* \mathbf{k} \langle s_1, s_2, \ldots, s_k \rangle$$
.

where each s_j is of degree one.

ii) The Milnor fiber F is a $K(\pi, 1)$ with π given by the exact sequence

$$1 \longrightarrow \pi_1(F) \longrightarrow \pi_1(V \backslash \mathcal{E}) \longrightarrow \mathbb{Z} \longrightarrow 1 (12)$$

iii) For the (modified) Cholesky-factorizations, $\pi_1(V \setminus \mathcal{E}) \simeq \mathbb{Z}^k$

Discriminants of Quiver Representations of Finite Type

A quiver is a connected finite directed graph Γ with edges $e(\Gamma) = \{\ell_j\}$, vertices $v(\Gamma) = \{v_i\}$, where we denote the initial vertex for ℓ_j by $i(\ell_j)$ and end point by $e(\ell_j)$. For a dimension vector **d**, a *representation of the quiver* is formed by associating to each vertex v_i a finite dimensional complex vector space V_i of dimension d_i and to each edge ℓ_j a linear transformation $\varphi_j : V_{i(\ell_j)} \to V_{e(\ell_j)}$. Quiver representation space $V \simeq \prod_{\ell_j \in e(\Gamma)} \operatorname{Hom}(V_{i(\ell_j)}, V_{e(\ell_j)})$. The group $\tilde{G} = \prod_{v_i \in v(\Gamma)} \operatorname{GL}(V_i)$ acts on V by

$$\{\psi_i\} \cdot \{\varphi_j\} = \{\psi_{e(\ell_j)} \circ \varphi_j \circ \psi_{i(\ell_j)}^{-1}\} \quad \text{for} \quad \{\psi_i\} \in \tilde{G}, \ \{\varphi_j\} \in V$$

Theorem(Gabriel) The quiver representations of finite type are given by Γ a Dynkin diagram of type A, D, or E and **d** a positive Schur root corresponding to the Dynkin diagram.

Theorem(Buchweitz and Mond) The representation of $G = \tilde{G}/\mathbb{C}^*$ on V gives an equidimensional representation for which the "quiver discriminant" $\mathcal{D}_{(\Gamma,\mathbf{d})}$ (= \mathcal{E}) is a linear free divisor. For \tilde{K} the maximal compact subgroup of \tilde{G} ,

$$\Lambda^{*}(\Gamma, \mathbf{d}) \stackrel{def}{=} H^{*}(\tilde{K}; \mathbf{k}) \simeq \otimes_{v_{i} \in v(\Gamma)} \Lambda^{*} \mathbf{k} \langle s_{1}^{(i)}, \dots, s_{d_{i}}^{(i)} \rangle$$
(13)

Theorem Let $F_{(\Gamma,\mathbf{d})}$ denote the Milnor fiber of the discriminant $\mathcal{D}_{(\Gamma,\mathbf{d})}$, and $L(\mathcal{D}_{(\Gamma,\mathbf{d})})$ the link. Then,

$$H^*(F_{(\Gamma,\mathbf{d})};\mathbf{k}) \simeq \Lambda^*(\Gamma,\mathbf{d})/(s_1,s_2)\cdot\Lambda^*(\Gamma,\mathbf{d})$$
(14)

which is the exterior algebra on the generators of (13) but with two degree 1 generators removed. Also,

$$\widetilde{H}^*(L(\mathcal{D}_{(\Gamma,\mathbf{d})});\mathbf{k}) \simeq \widetilde{\Lambda^*(\Gamma,\mathbf{d})}/(s_1 \cdot \widetilde{\Lambda^*(\Gamma,\mathbf{d})})[\dim_{\mathbb{C}} V - 2]$$
 (15)

which is the exterior algebra on the generators of (13) with one degree 1 generator removed, then truncated in the top degree, and then shifted by degree $\dim_{\mathbb{C}} V - 2$.

Further Directions on the Geometry of the Milnor fibers

- Applying a theorem of Mutsuo Oka to obtain the topology for a formal linear combination of functions defining exceptional orbit varieties for which compact models of Milnor fibers are joins of compact manifolds.
- Determine a cell decomposition of the Milnor fibers analog of Schubert decomposition, e.g. using "Cartan model for symmetric spaces" with Iwasawa decomposition, with closures of cells as suspensions of varieties.
- Using results from K-theory to determine the dual cohomology classes of the closures.
- Determine the image of the canonical subalgebra in the cohomology of Milnor fibers for matrix singularities.
- Determine further properties of the Milnor fibers and links using e.g. mixed Hodge structure and intersection homology.

Reference:

J. Damon, *Topology of Exceptional Orbit Hypersurfaces of Prehomogeneous Spaces*, to appear Journal of Topology, prepublication pdf available on Oxford Univ. Press, Journal of Topology, web page or as a preprint on the ArXiv