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1 Image Milnor number

If f : (Cn, S) → (Cp, 0) is A-finite and (n, p) are nice dimensions, f has a stable perturbation ft :
Ut → V , where Ut is a union of disjoint contractible neighbourhoods of the points of S. When n ≥ p,
or n = p − 1, the discriminant (image), D(ft) '

∨
Sp−1. The number of spheres is the discriminant

Milnor number µ∆(f) (resp. the image Milnor number µI(f)). In Mather’s nice dimensions, µ∆(f)
and conjecturally µI(f) satisfy

µ∆(f) ≥ Ae − codim(f) (n ≥ p)

µI(f) ≥ Ae − codim(f) (n = p− 1)

with equality in case f isA-equivalent to a weighted homogeneous germ (see [dJvS91], [DM91],[Mon15])
.

When µI = 1, you can often draw a good real picture, showing the vanishing homology in the right
dimension (and therefore homotopy-equivalent to the complex image or discriminant). Examples:

1. The Reidemeister moves, the singularities through which one generic planar projection of a knot
must pass as it is deformed to another.

2. The Goryunov moves: images of stable perturbations ofAe-codim1 germs from 2-space to 3-space.

3. The discriminant of a stable perturbation of a bi-germ consisting of two 1-parameter trivial un-
foldings of a Whitney cusp, meeting in 3-space.

In each case the image has the homotopy type of a single sphere. But the way the homotopy-sphere is
created is very different from one case to the next.
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Here is how to describe it it. Let f : X → Y be surjective. Key notions:

1. Multiple point spaces,

Dk(f) = closure{(x1, . . ., xk) : xi 6= xj if i 6= j, f(xi) = f(xj)for all i, j} (1.1)

These come with

• Sk-action, and

• projections πk : Dk(f) → Dk−1(f), πk(x1, . . ., xk) = (x1, . . ., xk−1).

We denote the image of Dk(f) in Dj(f), j < k, by Dk
j (f); the image of Dk(f) in X is Dk

1(f).

2. Alternating homology ([Gor95]). Suppose f : X → Y is surjective. With C•(D
k(f)) the usual

singular chain complex, define

CAlt
j (Dk(f)) = {c ∈ Cj(Dk(f)) : σ#(c) = sign σ for all σ ∈ Sk}.

This gives a subcomplex, as ∂(CAlt
j ) ⊂ CAlt

j−1, so we have alternating homology

HAlt
j (Dk(f)).

In fact we have a double complex: on CAlt
j (Dk(f)), πk−1

# ◦ πk# = 0; for

πk−1
# ◦ πk# = πk−1

# ◦ πk# ◦ (k, k − 1)#,

and on alternating chains (k, k− 1)# is multiplication by −1. And by same argument, f# ◦ π2
# = 0. So

CAlt
• (D•(f)) is a double complex

The relevance to the homology of the image can be seen from two examples:

Example 1: let c2
j ∈ ZAlt

j (D2(f)).

D2(f) 0 c2
j

∂oo

��
X 0 π2

#(c2
j )

oo

f#
��

c1
j+1∃

∂oo

��

e.g. if Hj(X) = 0

Y f#π
2
#(c2

j ) = 0 f#(c1
j+1)

∂oo

Because f# ◦ π2
# = 0 on alternating chains, f#(c1

j+1) is a cycle in Y . So from an alternating j-cycle c2
j

in D2(f), we get a j + 1 cycle on Y – provided π2
#(c2

j ) is a boundary in X, i.e. provided π2
∗[c

2
j ] = 0 in

Hj(X). Note that

• If c2
j = πk+1

# (c3
j ) for c3

j ∈ CAlt
j (Dk+1(f)) then πk#(c2

j ) = 0.
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• If c2
j = ∂c2j+1 for some c2

j+1 ∈ CAlt
j+1(D2(f)), then can take c1

j+1 = π2
#(c2

j+1) so the homology
class we get in Hj+1(Y ) is zero.

So we are really interested in

kerπ2
∗ : HAlt

j (D2(f)) → Hj(X)

imπ3
∗ : HAlt

j (D3(f)) → HAlt
j (D2(f))

i.e. in the homology of the vertical complex (HAlt
j (D•(ft)), π

•
∗).

Example 2: let c3
j ∈ Zj(D3(f)).

D3(f) 0 c3
j

∂oo

��
D2(f) 0 π3

#(c3
j )

∂oo

��

c2
j+1

∂

∃
oo

��

provided π3
∗[c

3
j ] = 0 ∈ HAlt

j (D2(f))

X 0 π2
#(c2

j+1)
∂oo

��

c1
j+2∃

∂oo

��

provided π2
∗[c

2
j+1] = 0 ∈ Hj+1(X)

Y 0 f#(c1
j+2)

∂oo

Here, a j-dimensional homology class leads to a j + 2-dimensional class in Y , provided certain
homology classes vanish. Etc.

Example 3: Good real stable perturbation ft of germ f of type H2, f(x, y) = (x, y3, xy + y5). Here
there is one triple point, with preimages P,Q,R, and two cross-cap points S and T . The Z2-invariant
points (S, S) and (T, T ) lie in D2(ft) (see (1.1)).

D  (f  )t
3

Ut
2D  (f  )t1

t
2D  (f  )

(T,T)

(S,S)

(P,R)
(Q,R)

(R,Q)

(R,P)(P,Q)
(Q,P)

Q

(Q,R,P)

P R

S T

(Q,P,R)

(P,R,Q)

(P,Q,R) (R,P,Q)

(R,Q,P)

3D  (f  )t2

π

π

3

2
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2 Image computing spectral sequence

Lurking behind this is the Image Computing Spectral Sequence. To calculate the homology of the
image, begin with the double array

�� �� ��
HAlt

0 (Dp)

��

HAlt
1 (Dp)

��

· · · HAlt
r (Dp(f))

��

· · ·

HAlt
0 (Dp−1)

��

HAlt
1 (Dp−1)

��

· · · HAlt
r (Dp−1)

��

· · ·

...
... · · ·

... · · ·

�� ��

· · ·

��

· · ·

H0(X)

��

H1(X)

��

· · · Hr(X)

��

· · ·

0 0 · · · 0 · · ·

(2.1)

and zig-zag your way down to Hq(Y ).
Fortunately, in a stable perturbation of an A-finite mono-germ this simplifies greatly:

Theorem 2.1. (K. Houston, [Hou97]) The alternating homology of the multiple point spaces of a stable
perturbation of an A-finite germ is concentrated in middle dimension.

Thus in each row of the diagram, at most one group is non-zero, and every arrow either begins or
ends at a 0.

Corollary 2.2. If ft is a stable perturbation of an A-finite germ (Cn, 0) → (Cn+1, 0), then

Hn(ft(Ut)) '
⊕
k≥1

HAlt
n−k+1(Dk(ft)).

So if f has image Milnor number 1, then just one of these groups is non-zero, and we can say that
the vanishing homology “comes from double points”, or “comes from triple points”, etc. A main theme
of this talk: how to find out which?

The case of germs of corank 1 is well understood.
We have explicit equations for the multiple point spaces Dk(f) (see [MM89]). For k ≤ n + 1, if is
f A-finite then Dk(f) is an ICIS of dimension n− k + 1 for k ≤ n+ 1 and Dk(ft) is a Milnor fibre.
An Ae- codimension 1 corank 1 map-germ of multiplicity `+ 1 from (C2`−1, 0) → (C2`, 0) is equivalent
to

f(u, v, x) = (u, v, x`+1 +

`−1∑
i=1

uix
i, x`+2 +

`−1∑
i=1

vix
i)
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We can check easily that Dk(f) is smooth for 2 ≤ k ≤ `, D`+1(f) is (isomorphic to) a hypersurface
germ with A1 singularity (and has dim `− 1), and Dk(f) = ∅ for k > `+ 1. By a theorem of Orlik and
Solomon on Milnor fibrations of invariant germs, as S`+1-representations

H`−1(D`+1(ft);Q) = J ⊗Q 1-dimensional sign representation

where J is the jacobian algebra of the hypersurface singularity. For an A1 singularity, the jacobian
algebra is just Q, on which S`+1 acts trivially, so

H`−1(D`+1(ft);Q) = 1-dimensional sign representation

and
HAlt
`−1(D`+1(ft);Q) = H`−1(D`+1(ft);Q)

is 1-dimensional. Thus the vanishing homology comes from ` + 1-tuple points, that is, from the top
multiple point space.

Guess: This is always the case: the vanishing cycle in the image of a stable perturbation ft of a
codimension 1 germ f0 : (Cn, 0) → (Cn+1, 0) comes from Dk(ft) where k is the greatest integer such
that Dk(f0) 6= ∅.

Remark 2.3. In what follows, we concentrate on the rational homology of all of the spaces we are inter-
ested in. When we replace integer coefficients in the alternating chain complex by rational coefficients,
for any space X with an Sk action we have

HAlt
q (X;Q) ' {c ∈ Hq(X;Q) : σ∗(c) = sign(σ)c for all σ ∈ Sk}.

The comparable equality with integer coefficients is false. A good example in which to see this is the
quotient map q from the unit disc to RP2, in which diametrically opposite points on the boundary of
the disc are identified. One sees that

HAlt
0 (D2(q);Z) = Z/2Z,

clearly not a subspace of H0(D2(q);Z).

3 A Corank 2 A-codimension 1 germ

f(x, y, a, b, c, d) = (x2 + ay, xy + bx+ cy, y2 + dx, a, b, c, d)

is stable and has corank 2.

f(x, y, a, b, c) = (x2 + ay, xy + bx+ cy, y2 + ax, a, b, c)

has Ae-codimension 1. The conjectured equality between µI and Ae-codimension holds here: µI = 1.
By Cor. 2.2,

1 = dimH5(Xt) = dimHAlt
4 (D2(ft)) + dimH3(D3(ft)). (3.1)

We have equations for D2(f) and D3(f) but these are neither ICIS nor determinantal, so give no direct
information on the homology of their smoothings D2(ft) and D3(ft)). The representation of S3 on
H3(D3(fgt)) splits into isotypal components

H3(D3(ft)) = HT
3 ⊕HAlt

3 ⊕Hρ
3
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where T means trivial and ρ is the irreducible 2-dim representation.
We look for information on the projection of D3(ft) to the domain of ft, which we denote by D3

1(ft),
and to the image, which we denote by M3(Ft). We get this information from a presentation of f∗(OC5

as OC6-module. Macaulay2 gives us the presentationY 2 −XZ − abZ − bcY + atY aY + cX + tY aY + bZ
aY + cX + tY −Z − ac Y − bc
aY + bZ Y − bc −X − ab− bt

 . (3.2)

1. The image triple points M3(f) are defined by the second Fitting ideal Fitt2(f∗(OC5,0)), generated
in this case by the 1× 1 minors of the matrix,

(Y − bc,X + ab, Z − ac) (3.3)

This defines a smooth space, so M3(ft), as a deformation of M3(f), is contractible. There are
no quadruple points, so M3(ft) is the quotient of D3(ft) by the action of S3. Thus

0 = H3(M3(ft)) = HT
3 (D3(ft)).

2. D3
1(f) ⊂ (C5, 0) is defined by the pull back of Fitt2:

(y2 + ya+ xc+ ac, xy − bc, x2 + xa+ yb+ ab)

Fortunately this is an isolated codimension 2 Cohen-Macaulay singularity, and therefore by the
Hilbert Burch theorem, it is defined by the maximal minors of a k × (k + 1) matrix for some k.
One finds that

f∗(Fitt2) = min2

 −y −c
x+ a −y − a
b x


Calculation shows “τ”= 1, so this is isomorphic to the unique singularity with “τ”= 1 in the table
on page 22 of the paper [FKZ15] of Fruhbis and Zach, which gives

b0(D3
1(ft)) = 1, b1 = 0, b2 = 1, b3 = 0. (3.4)

Note that D3
1(ft) is a smoothing of D3

1(f). One can see this by listing the local normal forms of
the stable singularities of mappings C5 → C6. The only one that has D3

1 singular is the quadruple
point, and in our case there are none, since the multiplicity of f is < 4.

3. D3(ft) → D3
1(ft) is a branched double cover:

(P,Q,R) 7→ P (P,R,Q) 7→ P

It is branched at P ∈ D3
1 with preimage of the form (P,Q,Q) or (P, P, P ). The closure of the

first type contains the second. We denote the closure of the locus of points of the first type by
D3

1,0(ft). It is the “shadow component” of f−1
t (f(Σft)), where Σft is the non-immersive locus

of ft. That is,
D3

1,0(ft) = closure of
(
f−1
t (ft(Σft)) r Σft

)
.
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Its ideal is the saturation, the limit as k → ∞ of transporter ideals

I(f−1
t (ft(Σft))) : I(Σft)

k.

When t = 0, a Macaulay 2 calculation finds that this ideal is

min2

(
a b x y

−3y + a x+ a −y − a 3y − a+ 4c

)
.

This is Pinkham’s example of a germ with isolated singularity whose versal base space is reducible.
In the deformation induced by the deformation of f , the ideal becomes

min2

(
a b x y + t

−3y + a+ t x+ a −y − a− t 3y − a+ 4c− t

)
This defines a smoothing of D3

1,0(f0), over the Artin component of the base space (since it is
given by the minors of a 2 × 4 matrix). It is well known that the only non-zero reduced Betti
number is β2 = 1.

4. D3
1(ft) is quotient of D3(ft) by the Z2-action generated by the transposition

(2, 3)(P,Q,R) = (P,R,Q).

So Hi(D
3
1(ft)) is the part of Hi(D

3(ft)) invariant under (2, 3)∗. Since HT
i (D3(ft)) = 0 for i > 0,

and on HAlt
i (D3(ft)) (2, 3)∗ is multiplication by −1, the (2, 3)∗ -invariant part of Hi(D

3(ft)) is
just the (2, 3)∗-invariant part of Hρ

i (D3(ft)), and thus isomorphic to the sum of copies of the
subspace of the two-dimensional irrreducible representation ρ invariant under (2, 3). The (2, 3)-
invariant subspace of ρ is 1-dimensional. Thus,

hi(D
3
1(ft)) =

1

2
hρi (D

3(ft)) (3.5)

for i > 1. Hence, by (3.4),

hρ1(D3(ft)) = 0, hρ2(D3(ft)) = 2, hρ3(D3(ft)) = 0. (3.6)

On the other hand, as D3(ft) is a branched cover of degree 2 of D3
1(ft), branched along D3

1,0(ft),
it follows that

χ(D3(ft)) = 2χ(D3
1(ft))− χ(D3

1,0(ft)) = 2.

Putting this together with (3.6), we have

2 = χ(D3(ft)) = 1−
(
hρ1 + hAlt1

)
+
(
hρ2 + hAlt2

)
−
(
hρ3 + hAlt3

)
= 1− hAlt1 + hAlt2 + 2− hAlt3 .

so
−1 = −hAlt1 + hAlt2 − hAlt3 . (3.7)

By Houston’s theorem in [Hou97], the alternating homology of D3(ft) is concentrated in middle
dimension, so hAlti (D3(ft)) = 0 for i 6= 3 and so from (3.7), hAlt3 (D3

1(ft)) = 1.

5. Hence, by (3.1), HAlt
4 (D2(ft)) = 0. The vanishing homology of the image comes from triple

points.
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Exercise

Copy the diagram on page 3.

A. (i) Mark an alternating 0-cycle c3
0 on D3(ft), by assigning a coefficient of +1 or −1 to each one of

the six points
(ii) Draw an alternating 1-chain c2

1 on D2(ft) such that ∂c21 = π3
#(c3

0).

(iii) Draw a 2-chain c1
2 on Ut such that ∂c12 = π2

#(c2
1).

Then f#(c1
2) is a 2-cycle on image(ft).

B. (i) Draw an alternating 1-cycle e2
1 on D2(ft).

(ii) Draw a 2-chain e1
2 on Ut such that ∂e1

2 = π2
#(e2

1).

Then ft#(e1
2) is a 2-cycle on image(ft).

C (harder) show that [f#(c1
2)] and [f#(e1

2)] are a basis for H2(image(ft)).
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