$\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{otivation} \\ \text{The k-plane distribution on } \mathbb{C}^n \times G(d,n) \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

On the Nash modification of a germ of complex analytic singularity

Arturo E. Giles Flores

Universidad Autónoma de Aguascalientes

Sao Carlos Julio 22, 2016

Arturo E. Giles Flores On the Nash modification of a germ of complex analytic singular

 $\begin{array}{c} & \text{Introduction} \\ & \text{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Outline

2 Motivation

- 3 The *k*-plane distribution on $\mathbb{C}^n \times G(d, n)$
- 4 The d-conormal space $C_d(X)$

4 3 b

 $\begin{array}{c} {\rm Introduction} \\ {\rm Motivation} \\ {\rm The} \ k\text{-plane distribution on } \mathbb{C}^n \times G(d,n) \\ {\rm The d-conormal space } C_d(X) \end{array}$

Introduction

 For a germ (X,0) ⊂ (Cⁿ,0) of complex analytic singularity the set of limits of tangent spaces plays a big role in the study of equisingularity. $\begin{array}{c} {\rm Introduction} \\ {\rm Motivation} \\ {\rm The} \ k\text{-plane distribution on } \mathbb{C}^n \times G(d,n) \\ {\rm The d-conormal space } C_d(X) \end{array}$

Introduction

- For a germ (X,0) ⊂ (Cⁿ,0) of complex analytic singularity the set of limits of tangent spaces plays a big role in the study of equisingularity.
- This set is obtained as the fiber $\nu^{-1}(0)$ of the Nash modification $\nu : \mathcal{N}X \to X$.

Introduction

- For a germ (X, 0) ⊂ (Cⁿ, 0) of complex analytic singularity the set of limits of tangent spaces plays a big role in the study of equisingularity.
- This set is obtained as the fiber $\nu^{-1}(0)$ of the Nash modification $\nu : \mathcal{N}X \to X$.
- By taking a representative of X ⊂ Cⁿ we can construct NX as an analytic subvariety of Cⁿ × G(d, n).

Introduction

- For a germ (X,0) ⊂ (Cⁿ,0) of complex analytic singularity the set of limits of tangent spaces plays a big role in the study of equisingularity.
- This set is obtained as the fiber $\nu^{-1}(0)$ of the Nash modification $\nu : \mathcal{N}X \to X$.
- By taking a representative of X ⊂ Cⁿ we can construct NX as an analytic subvariety of Cⁿ × G(d, n).
- Objective: Identify the subvarieties Z ⊂ Cⁿ × G(d, n) that are the Nash modification of their image under the canonical projection to Cⁿ.

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

Hypersurface case

When X is a hypersurface

 The Grasmannian G(n − 1, n) is the dual projective space ^{mn−1} and the set ν^{−1}(0) is described via projective duality by a finite family of subcones of the tangent cone which include its irreducible components. (Lê & Teissier, 1988).

Hypersurface case

When X is a hypersurface

- The Grasmannian G(n − 1, n) is the dual projective space ^{mn−1} and the set ν^{−1}(0) is described via projective duality by a finite family of subcones of the tangent cone which include its irreducible components. (Lê & Teissier, 1988).
- The generalization of this result to germs of arbitrary codimension needs to replace the Nash modification $\mathcal{N}X$ by the conormal space C(X). (Limits of tangent hyperplanes).

・ 同 ト ・ ヨ ト ・ ヨ ト

The Conormal space of X in \mathbb{C}^n

• $C(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ analytic subspace of dimension n-1.

伺 ト く ヨ ト く ヨ ト

The Conormal space of X in \mathbb{C}^n

- $C(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ analytic subspace of dimension n-1.
- $\kappa : C(X) \to X$ proper map induced by the projection to \mathbb{C}^n .

伺 ト イ ヨ ト イ ヨ ト

The Conormal space of X in \mathbb{C}^n

- $C(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ analytic subspace of dimension n-1.
- $\kappa: C(X) \to X$ proper map induced by the projection to \mathbb{C}^n .
- If $x \in X^0$ then $\kappa^{-1}(x)$ is the set of tangent hyperplanes: $H \in \check{\mathbb{P}}^{n-1}$ such that $T_x X^0 \subset H$.

伺い イラト イラト

The Conormal space of X in \mathbb{C}^n

- $C(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ analytic subspace of dimension n-1.
- $\kappa: C(X) \to X$ proper map induced by the projection to \mathbb{C}^n .
- If $x \in X^0$ then $\kappa^{-1}(x)$ is the set of tangent hyperplanes: $H \in \check{\mathbb{P}}^{n-1}$ such that $T_x X^0 \subset H$.
- κ⁻¹(0) is the set of limits of tangent hyperplanes to X at 0. It depends on the embedding BUT it contains the information of the Nash fiber ν⁻¹(0).

伺 ト イ ヨ ト イ ヨ ト

The Conormal space of X in \mathbb{C}^n

- $C(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ analytic subspace of dimension n-1.
- $\kappa: C(X) \to X$ proper map induced by the projection to \mathbb{C}^n .
- If $x \in X^0$ then $\kappa^{-1}(x)$ is the set of tangent hyperplanes: $H \in \check{\mathbb{P}}^{n-1}$ such that $T_x X^0 \subset H$.
- κ⁻¹(0) is the set of limits of tangent hyperplanes to X at 0. It depends on the embedding BUT it contains the information of the Nash fiber ν⁻¹(0).
- If X is a hypersurface then $\mathcal{N}X = C(X)$.

伺い イヨト イヨト

κ⁻¹(0) is described via projective duality by a finite family of subcones {V_α} of the tangent cone which include its irreducible components.

- 4 E 6 4 E 6

- κ⁻¹(0) is described via projective duality by a finite family of subcones {V_α} of the tangent cone which include its irreducible components.
- If V_{α} is not an irreducible component of $C_{X,0}$ it is called an EXCEPTIONAL CONE.

伺 ト イヨト イヨト

- κ⁻¹(0) is described via projective duality by a finite family of subcones {V_α} of the tangent cone which include its irreducible components.
- If V_{α} is not an irreducible component of $C_{X,0}$ it is called an EXCEPTIONAL CONE.
- Key: Identify Cⁿ × Ďⁿ⁻¹ with the projectivized cotangent bundle of Cⁿ and endow it with the canonical contact structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

- κ⁻¹(0) is described via projective duality by a finite family of subcones {V_α} of the tangent cone which include its irreducible components.
- If V_{α} is not an irreducible component of $C_{X,0}$ it is called an EXCEPTIONAL CONE.
- Key: Identify Cⁿ × Ďⁿ⁻¹ with the projectivized cotangent bundle of Cⁿ and endow it with the canonical contact structure.
- Z ⊂ ℂⁿ × Ďⁿ⁻¹ is the conormal space of its image if and only if it is a Legendrian subvariety. (Integral subvariety of dimension n − 1)

イロト 不得 とくほ とくほ とうほう

Example

• Let us look at the E_6 singularity defined in \mathbb{C}^4 by

$$\{z_3^2+z_4^2+z_1^3+z_2^4=0\}$$

A B > A B >

Example

• Let us look at the E_6 singularity defined in \mathbb{C}^4 by

$$\{z_3^2+z_4^2+z_1^3+z_2^4=0\}$$

• Its tangent cone $C_{E_6,0}$ defined by $\{z_3^2 + z_4^2 = 0\}$ is reduced, having the z_1z_2 plane as its singular locus and we have that: $\mathbb{P}\check{C}_{E_6,0} = \{[0:0:c:d] | c^2 + d^2 = 0\} \subset \check{\mathbb{P}}^3.$ $\begin{array}{c} & \text{Introduction} \\ \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n$)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Example

• However, the arc $\gamma : (\mathbb{C}, 0) \to (E_6, 0)$ defined by $\tau \to (-\tau^4, \tau^3, 0, 0)$ lifts to the conormal space $C(E_6)$ as the arc:

$$au
ightarrow (\gamma(au), [3 au^8:4 au^9:0:0])$$

with endpoint (0, [1:0:0:0]).

伺 ト く ヨ ト く ヨ ト

 $\begin{array}{c} & \text{Introduction} \\ \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n$)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Example

 However, the arc γ : (C, 0) → (E₆, 0) defined by τ → (-τ⁴, τ³, 0, 0) lifts to the conormal space C(E₆) as the arc:

$$au
ightarrow (\gamma(au), [3 au^8:4 au^9:0:0])$$

with endpoint (0, [1:0:0:0]).

• But [1:0:0:0] is not in the dual of the tangent cone, so it must be in the dual of an exceptional cone!!

伺 ト イ ヨ ト イ ヨ ト

Example

 However, the arc γ : (C, 0) → (E₆, 0) defined by τ → (-τ⁴, τ³, 0, 0) lifts to the conormal space C(E₆) as the arc:

$$\tau \rightarrow (\gamma(\tau), [3\tau^8: 4\tau^9: 0: 0])$$

with endpoint (0, [1:0:0:0]).

- But [1 : 0 : 0 : 0] is not in the dual of the tangent cone, so it must be in the dual of an exceptional cone!!
- Fact: κ⁻¹(0) = {[a:0:c:d]} ⊂ Ď³, with the exceptional cones being the z₁z₂ plane and the z₂ axis.

(4月) (4日) (4日) 日

 $\begin{array}{c} & \text{Introduction} \\ \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbf{C}^n \times G(d, n$)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Nash vs Conormal

Every limit of tangent hyperplanes H ∈ κ⁻¹(0) contains a limit of tangent spaces T ∈ ν⁻¹(0).

通 と イ ヨ と イ ヨ と

 $\begin{array}{c} & \text{Introduction} \\ \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n$)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Nash vs Conormal

- Every limit of tangent hyperplanes H ∈ κ⁻¹(0) contains a limit of tangent spaces T ∈ ν⁻¹(0).
- To each T ∈ ν⁻¹(0) there corresponds via projective duality a linear subspace P̃^{n-d-1} ⊂ κ⁻¹(0).

Nash vs Conormal

- Every limit of tangent hyperplanes H ∈ κ⁻¹(0) contains a limit of tangent spaces T ∈ ν⁻¹(0).
- To each T ∈ ν⁻¹(0) there corresponds via projective duality a linear subspace P̃^{n-d-1} ⊂ κ⁻¹(0).
- Problem: Not every $\check{\mathbb{P}}^{n-d-1} \subset \kappa^{-1}(0)$ corresponds to a $T \in \nu^{-1}(0)$ and we don't know how to identify them.

伺い イラト イラト

Example

• $(S,0) \subset (\mathbb{C}^5,0)$ germ of surface with an exceptional tangent ℓ .

A B > A B >

 $\begin{array}{c} & \text{Introduction} \\ \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n$)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Example

- $(S,0) \subset (\mathbb{C}^5,0)$ germ of surface with an exceptional tangent ℓ .
- The dimension of $\nu^{-1}(0)$ is at most 1.

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} & \text{Introduction} \\ & \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Example

- $(S,0) \subset (\mathbb{C}^5,0)$ germ of surface with an exceptional tangent ℓ .
- The dimension of $\nu^{-1}(0)$ is at most 1.
- But the dimension of the set of planes of \mathbb{C}^5 that contain the line ℓ is 3.

 $\begin{array}{c} & \text{Introduction} \\ & \mathbf{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Example

- $(S,0) \subset (\mathbb{C}^5,0)$ germ of surface with an exceptional tangent ℓ .
- The dimension of $\nu^{-1}(0)$ is at most 1.
- But the dimension of the set of planes of \mathbb{C}^5 that contain the line ℓ is 3.
- There are too many!!!

The canonical contact structure

For a point (p, W) ∈ Cⁿ × Ďⁿ⁻¹ the tangent space T_(p,W)(Cⁿ × Ďⁿ⁻¹) = Cⁿ × T_WĎⁿ⁻¹.

伺 ト イ ヨ ト イ ヨ ト

The canonical contact structure

- For a point $(p, W) \in \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ the tangent space $T_{(p,W)}(\mathbb{C}^n \times \check{\mathbb{P}}^{n-1}) = \mathbb{C}^n \times T_W \check{\mathbb{P}}^{n-1}.$
- The canonical contact structure chooses the hyperplane

$$\mathcal{H}(p,W) := W \times T_W \check{\mathbb{P}}^{n-1}$$

伺 ト イ ヨ ト イ ヨ ト

The canonical contact structure

- For a point $(p, W) \in \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ the tangent space $T_{(p,W)}(\mathbb{C}^n \times \check{\mathbb{P}}^{n-1}) = \mathbb{C}^n \times T_W \check{\mathbb{P}}^{n-1}.$
- The canonical contact structure chooses the hyperplane

$$\mathcal{H}(p,W) := W imes T_W \check{\mathbb{P}}^{n-1}$$

• This distribution is locally defined by the kernel of an analytic 1-form.

The canonical contact structure

- For a point $(p, W) \in \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ the tangent space $T_{(p,W)}(\mathbb{C}^n \times \check{\mathbb{P}}^{n-1}) = \mathbb{C}^n \times T_W \check{\mathbb{P}}^{n-1}.$
- The canonical contact structure chooses the hyperplane

$$\mathcal{H}(p,W) := W \times T_W \check{\mathbb{P}}^{n-1}$$

- This distribution is locally defined by the kernel of an analytic 1-form.
- For example in the chart of $\mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ where $a_1 \neq 0$:

$$dz_1+\frac{a_2}{a_1}dz_2+\cdots+\frac{a_n}{a_1}dz_n$$

On the n + d(n − d)-dimensional analytic manifold.
 Cⁿ × G(d, n)

同 ト イ ヨ ト イ ヨ ト

-

- On the n + d(n d)-dimensional analytic manifold. $\mathbb{C}^n \times G(d, n)$
- Define the d + d(n d)-plane distribution

$$\mathcal{H}(p, W) := W \times T_W G(d, n)$$

伺 ト く ヨ ト く ヨ ト

- On the n + d(n d)-dimensional analytic manifold. $\mathbb{C}^n \times G(d, n)$
- Define the d + d(n d)-plane distribution

$$\mathcal{H}(p,W) := W \times T_W G(d,n)$$

 It is locally defined by the kernel of a system of analytic 1-forms of Cⁿ × G(d, n).

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} & \text{Introduction} \\ & \text{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n $ \times $G(d, n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

Integral Subvarieties

The analytic subvariety Z ⊂ Cⁿ × G(d, n) is an integral subvariety of (Cⁿ × G(d, n), H) if for every smooth point (p, W) ∈ Z we have T_(p,W)Z ⊂ H(p, W).

伺 ト イ ヨ ト イ ヨ ト

Integral Subvarieties

The analytic subvariety Z ⊂ Cⁿ × G(d, n) is an integral subvariety of (Cⁿ × G(d, n), H) if for every smooth point (p, W) ∈ Z we have T_(p,W)Z ⊂ H(p, W).

۲

Proposition

Let $\pi : \mathbb{C}^n \times G(d, n) \to \mathbb{C}^n$ be the projection onto \mathbb{C}^n . If $Z \subset \mathbb{C}^n \times G(d, n)$ is an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$ then $t := \dim \pi(Z) \leq d$ and $\dim Z \leq t + (d - t)(n - d)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• π is a proper map $\Rightarrow \pi(Z) \subset \mathbb{C}^n$ analytic subvariety.

- ∢ ≣ ▶

A 10

- A - E - N

- π is a proper map $\Rightarrow \pi(Z) \subset \mathbb{C}^n$ analytic subvariety.
- $\pi_{|_Z}: Z o \pi(Z)$ generically submersive so

$$T_p\pi(Z)\subset D_p\pi(\mathcal{H}(p,W))=W$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

- π is a proper map $\Rightarrow \pi(Z) \subset \mathbb{C}^n$ analytic subvariety.
- $\pi_{|_Z}: Z o \pi(Z)$ generically submersive so

$$T_p\pi(Z)\subset D_p\pi(\mathcal{H}(p,W))=W$$

 Over a non-singular point p ∈ π(Z⁰) the fiber is contained in the set of tangent d−planes to π(Z) at p.

伺 ト イ ヨ ト イ ヨ ト

- π is a proper map $\Rightarrow \pi(Z) \subset \mathbb{C}^n$ analytic subvariety.
- $\pi_{|_Z}: Z o \pi(Z)$ generically submersive so

$$T_p\pi(Z)\subset D_p\pi(\mathcal{H}(p,W))=W$$

- Over a non-singular point p ∈ π(Z⁰) the fiber is contained in the set of tangent d−planes to π(Z) at p.
- That is d-dimensional linear subspaces W of \mathbb{C}^n such that $W \supset T_p \pi(Z)$.

伺い イラト イラト

- π is a proper map $\Rightarrow \pi(Z) \subset \mathbb{C}^n$ analytic subvariety.
- $\pi_{|_Z}: Z o \pi(Z)$ generically submersive so

$$T_p\pi(Z)\subset D_p\pi(\mathcal{H}(p,W))=W$$

- Over a non-singular point p ∈ π(Z⁰) the fiber is contained in the set of tangent d−planes to π(Z) at p.
- That is d-dimensional linear subspaces W of \mathbb{C}^n such that $W \supset T_p \pi(Z)$.
- Generalization of both the Nash modification and the conormal space of a germ of singularity (X,0) ⊂ (ℂⁿ,0) where we consider limiting d-dimensional linear tangent spaces for any d in {dim X,..., n − 1}.

The d-conormal space $C_d(X)$

Definition

Let $(X, 0) \subset (\mathbb{C}^n, 0)$ be a germ of analytic, reduced and irreducible analytic singularity of dimension k. For any $d \in \{k, k+1, \dots, n-1\}$ define the d-conormal of X by

$$\mathcal{C}_d(X) := \overline{\{(z,W) \in X^0 imes \mathcal{G}(d,n) \mid \mathcal{T}_z X^0 \subset W\}}$$

where X^0 denotes the smooth part of X, G(d, n) is the Grassmann variety of d-dimensional linear subspaces of \mathbb{C}^n and the bar denotes closure in $\mathbb{C}^n \times G(d, n)$. We will denote by $\kappa_d : C_d(X) \to X$ the restriction of the projection to the first coordinate.

- 4 同 ト 4 ヨ ト 4 ヨ ト

 $\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{otivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

• $C_d(X)$ is analytic space of dimension k + (d - k)(n - d) and $\kappa_d : C_d(X) \to X$ is a proper map.

伺 ト イヨト イヨト

-

 $\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{of invation} \end{array} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $\mathbf{C}_d(X)$} \end{array}$

- $C_d(X)$ is analytic space of dimension k + (d k)(n d) and $\kappa_d : C_d(X) \to X$ is a proper map.
- It is an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{of invation} \end{array} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $\mathbf{C}_d(X)$} \end{array}$

- $C_d(X)$ is analytic space of dimension k + (d k)(n d) and $\kappa_d : C_d(X) \to X$ is a proper map.
- It is an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$.
- For d = k we get the Nash modification

 $\nu: \mathcal{N}X \to X$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{otivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $C_d(X)$} \end{array}$

- $C_d(X)$ is analytic space of dimension k + (d k)(n d) and $\kappa_d : C_d(X) \to X$ is a proper map.
- It is an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$.
- For d = k we get the Nash modification

$$\nu: \mathcal{N}X \to X$$

• For d = n - 1 we get the conormal space

$$\kappa: C(X) \to X$$

伺い イヨト イヨト

 $\begin{array}{l} & \text{Introduction} \\ & \text{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $\mathsf{C}_d(X)$} \end{array}$

Characterization

Theorem

Let $Z \subset \mathbb{C}^n \times G(d, n)$ be a reduced, analytic and irreducible subvariety and $X = \pi(Z)$ where $\pi : \mathbb{C}^n \times G(d, n) \to \mathbb{C}^n$ denotes the projection to \mathbb{C}^n . If the dimension of X is equal to t, then the following statements are equivalent:

- i) Z is the d-conormal space of $X \subset \mathbb{C}^n$.
- ii) Z is an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$ of dimension t + (d t)(n d)

(4月) (4日) (4日) 日

For d ≠ n − 1 the dimension of C_d(X) depends on the dimension of X.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- For d ≠ n − 1 the dimension of C_d(X) depends on the dimension of X.
- For d = n 1 then t + (d t)(n d) = n 1 and $C_d(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ is the usual conormal space of X.

・ 戸 と ・ ヨ と ・ モ と …

- For d ≠ n − 1 the dimension of C_d(X) depends on the dimension of X.
- For d = n 1 then t + (d t)(n d) = n 1 and $C_d(X) \subset \mathbb{C}^n \times \check{\mathbb{P}}^{n-1}$ is the usual conormal space of X.
- We recover the characterization of conormal varieties as legendrian subvarieties of Cⁿ × Ď^{n−1} with its canonical contact structure.

4 冊 ト 4 戸 ト 4 戸 ト

 $\begin{array}{l} & \text{Introduction} \\ & \text{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $\mathbf{C}_d(\mathbf{X})$} \end{array}$

Corollary

Let Z be an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$ of dimension d. Then Z is the Nash modification of its image in \mathbb{C}^n if and only if for every smooth point $(z, W) \in Z^0$ the tangent space $T_{(z,W)}Z$ is transverse to the subspace $T_WG(d, n)$ of $T_{(z,W)}(\mathbb{C}^n \times G(d, n))$.

 $\begin{array}{l} & \text{Introduction} \\ & \text{Motivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d,n)$} \\ & \text{The d-conormal space $\mathbf{C}_d(\mathbf{X})$} \end{array}$

Corollary

Let Z be an integral subvariety of $(\mathbb{C}^n \times G(d, n), \mathcal{H})$ of dimension d. Then Z is the Nash modification of its image in \mathbb{C}^n if and only if for every smooth point $(z, W) \in Z^0$ the tangent space $T_{(z,W)}Z$ is transverse to the subspace $T_WG(d, n)$ of $T_{(z,W)}(\mathbb{C}^n \times G(d, n))$.

 The transversality condition is there to prevent a drop in dimension from Z to π(Z). • Using this construction we can characterize Whitney conditions in $\mathcal{N}X$ in an analogous way to the characterization in the conormal space C(X) given by Lê and Teissier.

.

- Using this construction we can characterize Whitney conditions in $\mathcal{N}X$ in an analogous way to the characterization in the conormal space C(X) given by Lê and Teissier.
- Consider (X,0) ⊂ (ℂⁿ,0) germ of analytic, reduced and irreducible singularity of dimension d.

伺 ト イヨト イヨト

- Using this construction we can characterize Whitney conditions in $\mathcal{N}X$ in an analogous way to the characterization in the conormal space C(X) given by Lê and Teissier.
- Consider (X,0) ⊂ (ℂⁿ,0) germ of analytic, reduced and irreducible singularity of dimension d.
- With (Y,0) ⊂ (X,0) singular locus such that (Y,0) is smooth.

・ 戸 ト ・ ラ ト ・ ラ ト

Proposition

Let \mathcal{I} denote the ideal of $O_{\mathcal{N}X}$ that defines the intersection $C_d(Y) \cap \mathcal{N}X$ and J the ideal defining $\nu^{-1}(Y)$.

- The couple (X \ Y, Y) satisfies Whitney's condition a) at the origin if and only if at every point (0, T) ∈ ν⁻¹(0) √I = √J in O_{NX,(0,T)}.
- The couple (X \ Y, Y) satisfies condition Whitney conditions

 a) and b) at the origin if and only if at every point
 (0, T) ∈ ν⁻¹(0) the ideals I and J have the same integral closure in O_{NX,(0,T)}.

(4月) (4日) (4日) 日

 $\begin{array}{c} & \text{Introduction} \\ & \mathbb{M}\text{otivation} \\ \text{The k-plane distribution on $\mathbb{C}^n \times G(d, n)$} \\ & \text{The d-conormal space $\mathsf{C}_d(X)$} \end{array}$

Thank you for listening.

Arturo E. Giles Flores On the Nash modification of a germ of complex analytic singular

30.00