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Introduction

Introduction

e For a germ (X,0) C (C",0) of complex analytic singularity
the set of limits of tangent spaces plays a big role in the study
of equisingularity.
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e For a germ (X,0) C (C",0) of complex analytic singularity
the set of limits of tangent spaces plays a big role in the study
of equisingularity.

o This set is obtained as the fiber v1(0) of the Nash
modification v : N X — X.

@ By taking a representative of X C C"” we can construct N'X
as an analytic subvariety of C"” x G(d, n).
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Introduction

Introduction

e For a germ (X,0) C (C",0) of complex analytic singularity
the set of limits of tangent spaces plays a big role in the study
of equisingularity.

o This set is obtained as the fiber v1(0) of the Nash
modification v : N.X — X.

@ By taking a representative of X C C"” we can construct N'X
as an analytic subvariety of C"” x G(d, n).

@ Objective: Identify the subvarieties Z C C" x G(d, n) that are
the Nash modification of their image under the canonical
projection to C".
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Motivation

Hypersurface case

When X is a hypersurface

@ The Grasmannian G(n — 1, n) is the dual projective space
P"=1 and the set ©~1(0) is described via projective duality by
a finite family of subcones of the tangent cone which include
its irreducible components. (L& & Teissier, 1988).
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Motivation

Hypersurface case

When X is a hypersurface

@ The Grasmannian G(n — 1, n) is the dual projective space
P"=1 and the set ©~1(0) is described via projective duality by
a finite family of subcones of the tangent cone which include
its irreducible components. (L& & Teissier, 1988).

@ The generalization of this result to germs of arbitrary
codimension needs to replace the Nash modification N'X by
the conormal space C(X). (Limits of tangent hyperplanes).
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Motivation

The Conormal space of X in C”

o C(X) C C" x P! analytic subspace of dimension n — 1.
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Motivation

The Conormal space of X in C”

e C(X) C C" x P~ analytic subspace of dimension n — 1.
@ x: C(X) — X proper map induced by the projection to C".
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Motivation

The Conormal space of X in C”

e C(X) C C" x P~ analytic subspace of dimension n — 1.
@ x: C(X) — X proper map induced by the projection to C".

o If x € X% then k~1(x) is the set of tangent hyperplanes:
H € P"~1 such that T, X° C H.
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Motivation

The Conormal space of X in C”

C(X) € C" x P"~1 analytic subspace of dimension n — 1.

k: C(X) — X proper map induced by the projection to C".
If x € X° then k~1(x) is the set of tangent hyperplanes:

H € P"~1 such that T, X° C H.

x~1(0) is the set of limits of tangent hyperplanes to X at 0.
It depends on the embedding BUT it contains the information
of the Nash fiber v~1(0).

Arturo E. Giles Flores On the Nash modification of a germ of complex analytic singular



Motivation

The Conormal space of X in C”

C(X) € C" x P"~1 analytic subspace of dimension n — 1.

k: C(X) — X proper map induced by the projection to C".

If x € X° then k~1(x) is the set of tangent hyperplanes:
H € P"~1 such that T, X° C H.

x~1(0) is the set of limits of tangent hyperplanes to X at 0.
It depends on the embedding BUT it contains the information
of the Nash fiber v~1(0).

If X is a hypersurface then N X = C(X).
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Motivation

e x1(0) is described via projective duality by a finite family of
subcones {V,,} of the tangent cone which include its
irreducible components.
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e x1(0) is described via projective duality by a finite family of
subcones {V,,} of the tangent cone which include its
irreducible components.

e If V, is not an irreducible component of Cx g it is called an
EXCEPTIONAL CONE.
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e x1(0) is described via projective duality by a finite family of
subcones {V,,} of the tangent cone which include its
irreducible components.

e If V, is not an irreducible component of Cx g it is called an
EXCEPTIONAL CONE.

o Key: Identify C" x P"~1 with the projectivized cotangent
bundle of C" and endow it with the canonical contact
structure.
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e x1(0) is described via projective duality by a finite family of
subcones {V,,} of the tangent cone which include its
irreducible components.

e If V, is not an irreducible component of Cx g it is called an
EXCEPTIONAL CONE.

o Key: Identify C" x P"~1 with the projectivized cotangent
bundle of C" and endow it with the canonical contact
structure.

@ Z C C" x P"1 is the conormal space of its image if and only
if it is a Legendrian subvariety. (Integral subvariety of
dimension n — 1)
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Motivation

Example

o Let us look at the Eg singularity defined in C* by

(Z+Z+2+2z =0}
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Motivation

Example

o Let us look at the Eg singularity defined in C* by
(Z+Z+2+2z =0}

o Its tangent cone Cg, o defined by {z5 + zZ = 0} is reduced,
having the z1z, plane as its singular locus and we have that:
PCro=1{[0:0:c:d]|c®+d?>=0} c 3.
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Motivation

Example

@ However, the arc v : (C,0) — (Eg,0) defined by
7 — (—7*,73,0,0) lifts to the conormal space C(Es) as the
arc:
7 — (y(7),[37% : 47° 1 0: 0])

with endpoint (0,{1:0:0:0]).
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Motivation

Example

@ However, the arc v : (C,0) — (Eg,0) defined by
7 — (—7*,73,0,0) lifts to the conormal space C(Es) as the
arc:
7 — (y(7),[37% : 47° 1 0: 0])

with endpoint (0,{1:0:0:0]).

@ But [1:0:0:0]is not in the dual of the tangent cone, so it
must be in the dual of an exceptional cone!!
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Motivation

Example

@ However, the arc v : (C,0) — (Eg,0) defined by
7 — (—7*,73,0,0) lifts to the conormal space C(Es) as the
arc:
7 — (y(7),[37% : 47° 1 0: 0])

with endpoint (0,{1:0:0:0]).

@ But [1:0:0:0]is not in the dual of the tangent cone, so it
must be in the dual of an exceptional cone!!

o Fact: s~ 1(0) = {[a:0: c: d]} C 3, with the exceptional
cones being the z;z> plane and the z axis.
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Motivation

Nash vs Conormal

o Every limit of tangent hyperplanes H € x~1(0) contains a
limit of tangent spaces T € v~1(0).
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Motivation

Nash vs Conormal

o Every limit of tangent hyperplanes H € x~1(0) contains a
limit of tangent spaces T € v~1(0).

e To each T € v~1(0) there corresponds via projective duality a
linear subspace P"~9-1 ¢ x~1(0).
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Motivation

Nash vs Conormal

o Every limit of tangent hyperplanes H € x~1(0) contains a
limit of tangent spaces T € v~1(0).

e To each T € v~1(0) there corresponds via projective duality a
linear subspace P"~9-1 ¢ x~1(0).

@ Problem: Not every P"~9=1 < x~1(0) corresponds to a
T € v~1(0) and we don't know how to identify them.
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Motivation

Example

e (S,0) C (C>,0) germ of surface with an exceptional tangent /.
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Motivation

Example

e (S,0) C (C>,0) germ of surface with an exceptional tangent /.

@ The dimension of v~1(0) is at most 1.
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Motivation

Example

e (5,0) C (C®,0) germ of surface with an exceptional tangent /.
@ The dimension of v~1(0) is at most 1.

@ But the dimension of the set of planes of C° that contain the
line ¢ is 3.
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Motivation

Example

e (5,0) C (C®,0) germ of surface with an exceptional tangent /.
@ The dimension of v~1(0) is at most 1.

@ But the dimension of the set of planes of C° that contain the
line ¢ is 3.

@ There are too many!!!
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The k-plane distribution on C” x G(d, n)

The canonical contact structure

e For a point (p, W) € C" x P"~1 the tangent space
T(p7W)(Cn X E/Dn_l) =C"x Tw]pn_l.
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The k-plane distribution on C” x G(d, n)

The canonical contact structure

e For a point (p, W) € C" x P"~1 the tangent space
T(p7W)(Cn X E/Dn_l) =C"x Tw]P’n_l.
@ The canonical contact structure chooses the hyperplane

H(p, W) := W x TPt
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The k-plane distribution on C” x G(d, n)

The canonical contact structure

e For a point (p, W) € C" x P"~1 the tangent space
T(p7W)(Cn X E/Dn_l) =C"x Tw]P’n_l.
@ The canonical contact structure chooses the hyperplane

H(p, W) := W x TPt

@ This distribution is locally defined by the kernel of an analytic
1-form.
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The k-plane distribution on C” x G(d, n)

The canonical contact structure

e For a point (p, W) € C" x P"~1 the tangent space
T(p7W)(Cn X E/Dn_l) =C"x Tan_l.
@ The canonical contact structure chooses the hyperplane

H(p, W) := W x TPt

@ This distribution is locally defined by the kernel of an analytic
1-form.

@ For example in the chart of C" x P"~1 where a; # 0:

dz + dez +-+ —dz,
a1
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The k-plane distribution on C” x G(d, n)

@ On the n+ d(n — d)-dimensional analytic manifold.
C" x G(d, n)
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The k-plane distribution on C” x G(d, n)

@ On the n+ d(n — d)-dimensional analytic manifold.
C" x G(d, n)
o Define the d + d(n — d)-plane distribution

H(p, W) := W x TwG(d,n)
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The k-plane distribution on C” x G(d, n)

@ On the n+ d(n — d)-dimensional analytic manifold.
C" x G(d, n)
o Define the d + d(n — d)-plane distribution

H(p, W) := W x TwG(d,n)

o It is locally defined by the kernel of a system of analytic
1-forms of C" x G(d, n).
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The k-plane distribution on C” x G(d, n)

Integral Subvarieties

@ The analytic subvariety Z C C" x G(d, n) is an integral
subvariety of (C" x G(d, n),H) if for every smooth point
(p, W) € Z we have T(, w)Z C H(p, W).
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The k-plane distribution on C” x G(d, n)

Integral Subvarieties

@ The analytic subvariety Z C C" x G(d, n) is an integral
subvariety of (C" x G(d, n),H) if for every smooth point
(p, W) € Z we have T(, w)Z C H(p, W).

Proposition

Let 7 : C" x G(d,n) — C" be the projection onto C". If
Z C C" x G(d, n) is an integral subvariety of (C" x G(d, n),H)
then t :==dimn(Z) < d anddimZ < t+ (d — t)(n— d).
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The k-plane distribution on C” x G(d, n)

e 7 is a proper map = m(Z) C C" analytic subvariety.
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The k-plane distribution on C” x G(d, n)

e 7 is a proper map = m(Z) C C" analytic subvariety.
o 7, : Z — w(Z) generically submersive so

Tpon(Z) C Do (H(p, W)) = W
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The k-plane distribution on C” x G(d, n)

e 7 is a proper map = m(Z) C C" analytic subvariety.
o 7, : Z — w(Z) generically submersive so

Tpon(Z) C Do (H(p, W)) = W

@ Over a non-singular point p € 7(Z°) the fiber is contained in
the set of tangent d—planes to w(Z) at p.
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The k-plane distribution on C” x G(d, n)

e 7 is a proper map = m(Z) C C" analytic subvariety.
o 7, : Z — w(Z) generically submersive so

Tpon(Z) C Do (H(p, W)) = W

@ Over a non-singular point p € 7(Z°) the fiber is contained in
the set of tangent d—planes to w(Z) at p.

@ That is d—dimensional linear subspaces W of C" such that
W D Tpr(Z).
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The k-plane distribution on C” x G(d, n)

7 is a proper map = 7(Z) C C" analytic subvariety.
m, : Z — m(Z) generically submersive so

Tpon(Z) C Do (H(p, W)) = W

Over a non-singular point p € 7(Z°) the fiber is contained in
the set of tangent d—planes to w(Z) at p.

That is d—dimensional linear subspaces W of C" such that
W D Tpr(Z).

Generalization of both the Nash modification and the
conormal space of a germ of singularity (X, 0) C (C",0)

where we consider limiting d-dimensional linear tangent spaces
for any d in {dim X,...,n—1}.
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The d-conormal space Cy(X)

The d-conormal space Cy(X)

Definition

Let (X,0) C (C",0) be a germ of analytic,reduced and irreducible
analytic singularity of dimension k. For any
de{k,k+1,...,n— 1} define the d — conormal of X by

Ca(X) == {(z, W) € X0 x G(d, n)| T,X° C W}

where X denotes the smooth part of X, G(d, n) is the Grassmann
variety of d—dimensional linear subspaces of C” and the bar
denotes closure in C"” x G(d, n). We will denote by

Kd @ Cq(X) — X the restriction of the projection to the first
coordinate.
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The d-conormal space Cy(X)

e Cy(X) is analytic space of dimension k + (d — k)(n — d) and
kg @ Cq4(X) — X is a proper map.
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The d-conormal space Cy(X)

e Cy(X) is analytic space of dimension k + (d — k)(n — d) and
kg @ Cq4(X) — X is a proper map.
e It is an integral subvariety of (C" x G(d, n),H).
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The d-conormal space Cy(X)

e Cy(X) is analytic space of dimension k + (d — k)(n — d) and
kg @ Cq4(X) — X is a proper map.

e It is an integral subvariety of (C" x G(d, n),H).

@ For d = k we get the Nash modification

viNX—=X
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The d-conormal space Cy(X)

e Cy(X) is analytic space of dimension k + (d — k)(n — d) and
kg @ Cq4(X) — X is a proper map.

e It is an integral subvariety of (C" x G(d, n),H).
@ For d = k we get the Nash modification

v:NX—X
@ For d = n — 1 we get the conormal space

k:C(X)—= X
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The d-conormal space Cy(X)

Characterization

Theorem

Let Z C C" x G(d, n) be a reduced, analytic and irreducible
subvariety and X = w(Z) where w : C" x G(d,n) — C" denotes
the projection to C". If the dimension of X is equal to t, then the
following statements are equivalent:

i) Z is the d-conormal space of X C C".

ii) Z is an integral subvariety of (C" x G(d, n),H) of dimension
t+(d—t)(n—d)
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The d-conormal space Cy(X)

e For d # n— 1 the dimension of Cy4(X) depends on the
dimension of X.
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The d-conormal space Cy(X)

e For d # n— 1 the dimension of Cy4(X) depends on the
dimension of X.

@ Ford=n—1thent+(d—t)(n—d)=n—1and
C4(X) € C" x P—1 is the usual conormal space of X.
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The d-conormal space Cy(X)

e For d # n— 1 the dimension of Cy4(X) depends on the
dimension of X.

@ Ford=n—1thent+(d—t)(n—d)=n—1and
Cq(X) € C" x P"~1 is the usual conormal space of X.

@ We recover the characterization of conormal varieties as
legendrian subvarieties of C" x P"~1 with its canonical
contact structure.
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The d-conormal space Cy(X)

Let Z be an integral subvariety of (C" x G(d, n), ) of dimension
d. Then Z is the Nash modification of its image in C" if and only
if for every smooth point (z, W) € Z° the tangent space TewZ
is transverse to the subspace Tw G(d, n) of Ti, ) (C" x G(d, n)).
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The d-conormal space Cy(X)

Let Z be an integral subvariety of (C" x G(d, n), ) of dimension
d. Then Z is the Nash modification of its image in C" if and only
if for every smooth point (z, W) € Z° the tangent space TewZ
is transverse to the subspace Tw G(d, n) of Ti, ) (C" x G(d, n)).

@ The transversality condition is there to prevent a drop in
dimension from Z to w(Z).
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The d-conormal space Cy(X)

@ Using this construction we can characterize Whitney
conditions in A/ X in an analogous way to the characterization
in the conormal space C(X) given by Lé and Teissier.
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The d-conormal space Cy(X)

@ Using this construction we can characterize Whitney
conditions in A/ X in an analogous way to the characterization
in the conormal space C(X) given by Lé and Teissier.

e Consider (X,0) C (C",0) germ of analytic, reduced and
irreducible singularity of dimension d.
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The d-conormal space Cy(X)

@ Using this construction we can characterize Whitney
conditions in A/ X in an analogous way to the characterization
in the conormal space C(X) given by Lé and Teissier.

e Consider (X,0) C (C",0) germ of analytic, reduced and
irreducible singularity of dimension d.

e With (Y,0) C (X,0) singular locus such that (Y,0) is
smooth.
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The d-conormal space Cy(X)

Let T denote the ideal of Onrx that defines the intersection
Ca(Y)NNX and J the ideal defining v=2(Y).

@ The couple (X \ 'Y, Y) satisfies Whitney's condition a) at the
origin if and only if at every point (0, T) € v=1(0) VZ = /J
in Onx,(0,T)-

@ The couple (X \ 'Y, Y) satisfies condition Whitney conditions
a) and b) at the origin if and only if at every point
(0, T) € v~1(0) the ideals T and J have the same integral
closure in Oprx (0,T)-
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The d-conormal space Cy(X)

Thank you for listening.
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