
NON-ISOLATED HYPERSURFACE SINGULARITIES AND LÊ CYCLES

DAVID B. MASSEY

Abstract. In this series of lectures, I will discuss results for complex hypersurfaces with

non-isolated singularities.

In Lecture 1, I will review basic definitions and results on complex hypersurfaces, and then
present classical material on the Milnor fiber and fibration. In Lecture 2, I will present basic

results from Morse theory, and use them to prove some results about complex hypersurfaces,

including a proof of Lê’s attaching result for Milnor fibers of non-isolated hypersurface sin-
gularities. This will include defining the relative polar curve. Lecture 3 will begin with a

discussion of intersection cycles for proper intersections inside a complex manifold, and then
move on to definitions and basic results on Lê cycles and Lê numbers of non-isolated hypersur-

face singularities. Lecture 4 will explain the topological importance of Lê cycles and numbers,

and then I will explain, informally, the relationship between the Lê cycles and the complex of
sheaves of vanishing cycles.

1. Lecture 1: Topology of Hypersurfaces and the Milnor fibration

Suppose that U is an open subset of Cn+1; we use (z0, . . . , zn) for coordinates.

Consider a complex analytic (i.e., holomorphic) function f : U → C which is not locally

constant. Then, the hypersurface V (f) defined by f is the purely n-dimensional complex analytic

space defined by the vanishing of f , i.e., V (f) := {x ∈ U | f(x) = 0}. To be assured that V (f)

is not empty and to have a convenient point in V (f), one frequently assumes that 0 ∈ V (f),

i.e., that f(0) = 0. This assumption is frequently included in specifying the function, e.g., we

frequently write f : (U ,0)→ (C, 0).

Near each point x ∈ V (f), we are interested in the local topology of how V (f) is embedded in

U . This is question of how to describe the local, ambient topological-type of V (f) at each point.

A critical point of f is a point x ∈ U at which all of the complex partial derivatives of f

vanish. The critical locus of f is the set of critical points of f , and is denoted by Σf , i.e.,

Σf := V

(
∂f

∂z0
,
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

The complex analytic Implicit Function Theorem implies that, if x ∈ V (f) and x 6∈ Σf ,

then, in an open neighborhood of x, V (f) is a complex analytic submanifold of U ; thus,

we completely understand the ambient topology of V (f) near a non-critical point. However, if

x ∈ Σf , then it is possible that V (f) is not even a topological submanifold of U near x.
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Note that, as sets, V (f) = V (f2), and that every point of V (f2) is a critical point of f2. In

fact, this type of problem occurs near a point p any time that an irreducible component of f (in

its unique factorization in the unique factorization domain OU,p) is raised to a power greater

than one. Hence, when considering the topology of V (f) near a point p ∈ V (f), it is standard

to assume that f is reduced, i.e., has no such repeated factors. This is equivalent to assuming

that dimp Σf < n.

Let’s look at a simple, but important, example.

Example 1.1. Consider f : (C2,0)→ (C, 0) given by f(x, y) = y2 − x3.

It is trivial to check that Σf = {0}. Thus, at (near) every point of V (f) other than the origin,

V (f) is a complex analytic submanifold of C2.

Figure 1. A cusp, intersected by two “spheres”.

In the figure, ignoring for now the two circles, you see the graph of V (f), but drawn over the

real numbers. We draw graphs over the real numbers since we can’t draw a picture over the

complex numbers, but we hope that the picture over the real numbers gives us some intuition

for what happens over the complex numbers.

Note that f has a critical point at the origin, and so the complex analytic Implicit Function

Theorem does not guarantee that V (f) is a complex submanifold of C2 near 0. If the real

picture is not misleading, it appears that V (f) is not even a smooth (C∞) submanifold of C2

near 0; this is true.

However, the real picture is, in fact, misleading in one important way. Over the real numbers,

V (f) is a topological submanifold of R2 near 0, i.e., there exist open neighborhoods U and W
of the origin in R2 and a homeomorphism of triples

(U , U ∩ V (f), 0) ∼= (W, W ∩ V (x), 0).

However, over the complex numbers V (f) is not a topological submanifold of C2 near 0. This

takes some work to show.
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Why have we drawn the two circles in the figure? Because we want you to observe two things,

which correspond to a theorem that we shall state below. First, that the topological-type of the

hypersurface seems to stabilize inside open balls of sufficiently small radius, e.g., the hypersurface

“looks” the same inside the open disk B
◦

2 bounded by the bigger circle as it does inside the open

disk B
◦

1 bounded by the smaller circle; of course, in C2, “disk” becomes “4-dimensional ball”,

and “circle” becomes “3-dimensional sphere”. Second, it appears that this ambient topological-

type can be obtained by taking the (open) cone on the bounding sphere and its intersection with

the hypersurface.

We make all of this precise below.

Let us first give rigorous definitions of the local, ambient topological-type of a hypersurface

and of a singular point.

Definition 1.2. Suppose that U is an open subset of Cn+1, and that we have a complex analytic

function f : U → C which is not locally constant. Let p ∈ V (f). Then, the local, ambient

topological-type of V (f) at p is the homeomorphism-type of the germ at p of the triple

(U , V (f),p).

In other words, if g :W → C is another such function, and q ∈ V (g), then the local, ambient

topological-type of V (f) at p is the same as that of V (g) at q if and only if there exist open

neighborhoods U ′ and W ′ of p and q, respectively, and a homeomorphism of triples

(U ′, U ′ ∩ V (f), p) ∼= (W ′, W ′ ∩ V (g), q).

The trivial local, ambient topological-type is that of (Cn+1, V (z0), 0). To say that V (f)

has the trivial topological-type at a point p is simply to say that V (f) is a topological submanifold

of U near p.

A point on a hypersurface at which it has the trivial local, ambient topological-type is called a

regular point of the hypersurface. A non-regular point on a hypersurface is called a singular

point or a singularity. The set of singular points of V (f) is denoted by ΣV (f).

Remark 1.3. You may question our terminology above. Shouldn’t “regular” and “singular”

have something to do with smoothness, not just topological data? In fact, it turns out that there

is a very strong dichotomy here.

If f is reduced at p, then, in an open neighborhood of p, Σf = ΣV (f). This is not trivial to

see, and uses the Curve Selection Lemma (see Lemma 5.1 in the Appendix) to show that, near

a point in V (f), Σf ⊆ V (f), and then uses results on Milnor fibrations.

But, what it implies is that, at a point on a hypersurface, the hypersurface is either an

analytic submanifold or is not even a topological submanifold. Therefore, all conceivable notions

of “regular” and “singular” agree for complex hypersurfaces.

This also explains the frequent, mildly bad, habit of using the terms “critical point of f” and

“singular point of V (f)” interchangeably.
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The following theorem can be found in the work of  Lojasiewicz in [17], and is now a part

of the general theory of Whitney stratifications. We state the result for hypersurfaces in affine

space, but the general result applies to arbitrary analytic sets. We recall the definition of the

cone and the cone on a pair in the Appendix.

Theorem 1.4. ( Lojasiewicz, 1965) Suppose that U is an open subset of Cn+1, and that we have

a complex analytic function f : U → C which is not locally constant. Let p ∈ V (f), and for all

ε > 0, let Bε(p) and Sε(p) denote the closed ball and sphere of radius ε, centered at p, in Cn+1.

Let B◦ε (p) denote the corresponding open ball.

Then, there exists ε0 > 0 such that Bε0(p) ⊆ U and such that, if 0 < ε ≤ ε0, then:

(1)
(
Bε(p), Bε(p) ∩ V (f),p

)
is homeomorphic to the triple c

(
Sε(p), Sε(p) ∩ V (f)

)
by a

homeomorphism which is the “identity” on Sε(p) when it is identified with Sε(p)× {0}.
In particular,(

B◦ε (p), B◦ε (p) ∩ V (f),p
) ∼= c◦

(
Sε(p), Sε(p) ∩ V (f)

)
;

(2) the homeomorphism-type of the pair
(
Sε(p), Sε(p) ∩ V (f)

)
is independent of the choice

of ε (provided 0 < ε ≤ ε0).

Thus, the local, ambient topological-type of V (f) at p is determined by the homeomorphism-

type of the pair
(
Sε(p), Sε(p) ∩ V (f)

)
, for sufficiently small ε > 0.

Definition 1.5. The space Sε(p) ∩ V (f) (or its homeomorphism-type) for sufficiently small

ε > 0 is called the real link of V (f) at p and is frequently denoted by K.

Remark 1.6. The letter K is used because, in the first interesting case, of complex curves in

C2, the real link is a knot (or link) in S3, and how this knot is embedded in S3 completely

determines the local, ambient topological-type.

Exercise 1.7. Consider the following examples:

(1) f : C2 → C given by f(x, y) = xy. Show that V (f) is not a topological manifold at 0

(and so, is certainly not a topological submanifold).

(2) f : C2 → C given by f(x, y) = y2 − x3. Show that V (f) is homeomorphic to a disk near

0, and so is a topological manifold. Now, parameterize K = S3
ε ∩ V (f) and show that

you obtain the trefoil knot in S3
ε . Conclude that V (f) is not a topological submanifold

of C2 near 0.

(3) f : C3 → C given by f(x, y, z) = 2xy − z2. Show that K is homeomorphic to real

projective 3-space. Conclude that V (f) is not a topological manifold near 0. (Hint: Use

x = s2, y = t2, and z =
√

2st, and note that a point of V (f) is not represented by a

unique choice of (s, t).)
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As you can probably tell, the functions used in Exercise 1.7 were chosen very specially, and,

in general, it is unreasonable to expect to analyze the topology of a hypersurface at a singular

point via such concrete unsophisticated techniques.

So...how does one go about understanding how the real link K embeds in a small sphere?

One large piece of data that one can associate to this situation is the topology of the comple-

ment. This, of course, is not complete data about the embedding, but it is a significant amount

of data.

For ease of notation, assume that we have a complex analytic function f : (U ,0) → (C, 0)

which is not locally constant, and that we wish to understand the local, ambient topology of

V (f) at 0. We will suppress the references to the center p = 0 in our notation for spheres and

balls. So, how do you analyze Sε − Sε ∩ V (f) = Sε −K for sufficiently small ε > 0?

Milnor gave us many tools in his 1968 book [27]. He proved that, for sufficiently small ε > 0,

the map
f

|f |
: Sε −K → S1 ⊆ C

is a smooth, locally trivial fibration, and then proved many results about the fiber. (To review

what a smooth, locally trivial fibration is, see the Appendix.)

We will state some of the results of Milnor and others about the above fibration, which is now

known as the Milnor fibration. Below, Dδ denotes a disk in C, centered at the origin, of radius

δ, and so ∂Dδ is its boundary circle.

Theorem 1.8. ([27], Theorem 4.8 and Theorem 5.11) Suppose that f : (U ,0) → (C, 0) is a

complex analytic function. Then, there exists ε0 > 0 such that, for all ε with 0 < ε ≤ ε0, there

exists δε > 0, such that, for all δ with 0 < δ ≤ δε, the map f/|f | from Sε − Sε ∩ V (f) = Sε −K
to S1 is a smooth locally trivial fibration.

Furthermore, this smooth locally trivial fibration is diffeomorphic to the restriction

f : B◦ε ∩ f−1(∂Dδ)→ ∂Dδ.

Finally, the restriction

f : Bε ∩ f−1(∂Dδ)→ ∂Dδ
(note the closed ball) is a smooth locally trivial fibration, in which the fiber is a smooth manifold

with boundary. This fibration is fiber-homotopy-equivalent to the one using the open ball (i.e., is

isomorphic up to homotopy).

Remark 1.9. It will be important to us later that Milnor’s proof of the above theorem also

shows that Bε ∩ f−1(Dδ) is homeomorphic to Bε and, hence, is contractible. This is sometimes

referred to as a Milnor tube.
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Definition 1.10. Either one of the first two isomorphic fibrations given in the definition above

is called the Milnor fibration of f at 0, and the corresponding fiber is called the Milnor fiber.

The third and final fibration from the theorem above is called the compact Milnor fibration,

and the corresponding fiber is called the compact Milnor fiber.

If we are interested in the Milnor fibration and/or Milnor fiber only up to homotopy, then any

of the three fibrations and fibers are called the Milnor fibration and Milnor fiber.

Remark 1.11. As U is an open subset of Cn+1, the Milnor fiber is a complex n-manifold, and

so is a real 2n-manifold. The compact Milnor fiber is thus a compact real 2n-manifold with

boundary.

We should also remark that the Milnor fibration exists at each point p ∈ V (f); one simply

replaces the ball and spheres centered at 0 with balls and spheres centered at p.

As a final remark, we should mention that the phrase “there exists ε0 > 0 such that, for all ε

with 0 < ε ≤ ε0, there exists δε > 0, such that, for all δ with 0 < δ ≤ δε” is usually abbreviated

by writing simply “For 0 < δ � ε� 1”. This is read aloud as “for all sufficiently small positive

ε, for all sufficiently small positive δ (small compared to the choice of ε)”.

We will now list a number of results on the Milnor fibration and Milnor fiber. Below, we

let U be an open neighborhood of the origin in Cn+1, f : (U ,0) → (C, 0) is a complex analytic

function, Ff,0 denotes the Milnor fiber of f at 0, and we let s := dim0 Σf .

(1) If 0 6∈ Σf , then Ff,0 is diffeomorphic to a ball and so, in particular, is contractible and

has trivial homology (i.e., the homology of a point).

(2) Ff,0 has the homotopy-type of a finite n-dimensional CW-complex. In particular, if

k > n, then the homology Hk(Ff,0;Z) = 0, and Hn(Ff,0;Z) is free Abelian. (See [27],

Theorem 5.1.)

(3) Ff,0 is (n− s− 1)-connected. (For s = 0, see [27], Lemma 6.4. For general s, see [11].)

(4) Suppose that s = 0. Then Items 1 and 2 imply that Ff,0 has the homotopy-type of the

one-point union of a finite collection of n-spheres; this is usually referred to as a bouquet

of spheres. The number of spheres in the bouquet, i.e., the rank of Hn(Ff,0;Z), is called

the Milnor number of f at 0 and is denoted by either µf (0) or µ0(f).

(5) The Milnor number of f at an isolated critical point can be calculated algebraically by

taking the complex dimension of the Jacobian algebra, i.e.,

µf (0) = dimC
C{z0, . . . , zn}〈
∂f
∂z0

, . . . , ∂f∂zn

〉 ,
where C{z0, . . . , zn} is the ring of convergent power series at the origin. (This follows

from [27], Theorem 7.2.)

In particular, if s = 0, then µf (0) > 0 if and only if 0 ∈ Σf .
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(6) In Lemma 9.4 of [27], Milnor proves that, if f is a weighted homogeneous polynomial,

then the Milnor fiber of f at 0 is diffeomorphic to the global fiber f−1(1) in Cn+1.

(7) If f : (U ,0) → (C, 0) and g : (U ′,0) → (C, 0) are analytic functions, then the Milnor

fibre of the function h : (U × U ′,0) → (C, 0) defined by h(w, z) := f(w) + g(z) is

homotopy-equivalent to the join (see the Appendix), Ff,0 ∗ Fg,0, of the Milnor fibres of

f and g.

This determines the homology of Fh,0 in a simple way, since the reduced homology of

the join of two spaces X and Y is given by

H̃j+1(X ∗ Y ) =
∑
k+l=j

H̃k(X)⊗ H̃l(Y ) ⊕
∑

k+l=j−1

Tor
(
H̃k(X), H̃l(Y )

)
,

where all homology groups are with Z coefficients.

This is the Sebastiani-Thom Theorem, proved in different cases by many people. See,

for instance, [32], [30], [31], [28], [29], and [23].

(8) Let U and W be open neighborhoods of 0 in Cn+1, let f : (U ,0) → (C, 0) and

g : (U ,0) → (C, 0) be reduced complex analytic functions which define hypersurfaces

with the same ambient topological-type at the origin. Then, there exists a homotopy-

equivalence α : Ff,0 → Fg,0 such that the induced isomorphism on homology commutes

with the respective Milnor monodromy automorphisms.

In particular, the homotopy-type of the Milnor fiber of a reduced complex analytic

function f is an invariant of the local, ambient topological-type of V (f), and so, for

hypersurfaces defined by a reduced function with an isolated critical point, the Milnor

number is an invariant of the local, ambient topological-type.

(For s = 0, this result appears in a remark of Teissier in [35] in 1972 and in [36] in

1973. The general result, with a monodromy statement, is due to Lê in [13] and [12],

which both appeared in 1973.)

(9) Suppose that 0 ∈ Σf . Let T if,0 : Hi(Ff,0;Z) → Hi(Ff,0;Z) denote the monodromy

automorphism in degree i. Then, the Lefschetz number of the monodromy T ∗f,0 is zero,

i.e., ∑
i

(−1)i trace
(
T if,0

)
= 0.

(See [1].)

(10) The previous item implies that the converse to Item 1 is true. Thus, the Milnor fiber

Ff,0 has trivial homology (i.e., has the homology of a point) if and only if 0 6∈ Σf (and

so, in particular, V (f) is a topological submanifold of affine space at 0).

Exercise 1.12. In some/many cases, the Milnor number can be calculated by hand.

(1) Calculate the Milnor number at 0 of f(x, y) = y2 − x3, which defines a cusp.

(2) Calculate the Milnor number at 0 of f(x, y) = y2 − x3 − x2, which defines a node.

Conclude that the node and cusp have different ambient topological types.



8 DAVID B. MASSEY

(3) Show that f = y2−x5 and g = y3−x3 both have Milnor number 4 at the origin, but do

not define hypersurfaces with the same ambient topological-type at the origin (actually,

these hypersurfaces do not have the same topological-type at the origin, leaving out the

term “ambient”).

Thus, even for isolated critical points, the converse of Item 8, above, is false.

Exercise 1.13. In special cases, one can calculate the homology groups of the Milnor fiber

of a non-isolated critical point. Consider f(x, y, t) = y2 − x3 − tx2. Show that dim0 Σf = 1

and calculate the homology groups of Ff,0. (Hint: Use the Sebastiani-Thom Theorem. Also,

use Milnor’s result for weighted homogeneous polynomials, and that the homotopy-type of the

Milnor fiber is certainly invariant under local analytic coordinate changes.)

The function f can be thought of as a family of hypersurfaces, parameterized by t, where each

member of the family has an isolated critical point at the origin; so, this is usually described as

a family of nodes which degenerates to a cusp at t = 0.

Despite Item 3 of Exercise 1.12, the stunning conclusion of Lê and Ramanujam is that the

converse of Item 7, above, is true in the case of isolated critical points if f and g are in the same

analytic family (with one dimension restriction):

Theorem 1.14. (Lê-Ramanujam, [16]) Suppose n 6= 2, and f and g are part of an analytic

family of functions with isolated critical points, all of which have the same Milnor number, then

f and g define hypersurfaces with the same local, ambient topological-type.

Thus, for hypersurfaces with isolated singularities, the Milnor number is algebraically cal-

culable, determines the homology of the Milnor fiber, and its constancy in a family (with one

dimension restriction) controls the local ambient topology in the family.

We would like similar data for hypersurfaces with non-isolated singularities. The Lê numbers

succeed at generalizing the Milnor number in many ways, but do not yield such strong results.

We shall discuss Lê cycles and Lê numbers in the third lecture.

In the second lecture, we will discuss the basics of Morse Theory, and use it to prove an

important result of Lê from [12] on the homology of the Milnor fiber for non-isolated hypersurface

singularities.

2. Lecture 2: Morse Theory, the relative polar curve, and two applications

Many of the results in [27] are proved using Morse Theory, and so we wish to give a quick

introduction to the subject. We will then give some examples of how Morse Theory is used in

the study of singular hypersurfaces.



NON-ISOLATED HYPERSURFACE SINGULARITIES 9

Morse Theory is the study of what happens at the most basic type of critical point of a smooth

map. The classic, beautiful references for Morse Theory are [25] and [26]. We also recommend

the excellent, new introductory treatment in [24].

In this section, until we explicitly state otherwise, f : N → R will be a smooth function from

a smooth manifold of dimension n into R. For all a ∈ R, let N≤a := f−1((−∞, a]). Note that if

a is a regular value of f , then N≤a is a smooth manifold with boundary ∂N≤a = f−1(a) (see, for

instance, [34]).

The following is essentially Theorem 3.1 of [25].

Theorem 2.1. Suppose that a, b ∈ R and a < b. Suppose that f−1([a, b]) is compact and

contains no critical points of f .

Then, the restriction f : f−1([a, b]) → [a, b] is a trivial fibration, and N≤a is a deformation

retract of N≤b via a smooth isotopy. In particular, N≤a is diffeomorphic to N≤b.

Now, let p ∈ N , and let (x1, ..., xn) be a smooth, local coordinate system for N in an open

neighborhood of p.

Definition 2.2. The point p is a non-degenerate critical point of f provided that p is a

critical point of f , and that the Hessian matrix
(

∂2f
∂xi∂xj

(p)
)
i,j

is non-singular.

The index of f at a non-degenerate critical point p is the number of negative eigenvalues

of
(

∂2f
∂xi∂xj

(p)
)
i,j

, counted with multiplicity.

Note that since the Hessian matrix is a real symmetric matrix, it is diagonalizable and, hence,

the algebraic and geometric multiplicities of eigenvalues are the same.

Exercise 2.3. Prove that p being a non-degenerate critical point of f is independent of the

choice of local coordinates on N .

The index of f at a non-degenerate critical point p can also can characterized as the index

of the bilinear form B defined by the Hessian matrix; this is defined to be the dimension of a

maximal subspace on which B is negative-definite. Using this, prove that the index of f at a

non-degenerate critical is also independent of the coordinate choice.

The following is Lemma 2.2 of [25], which tells us the basic structure of f near a non-degenerate

critical point.

Lemma 2.4. (The Morse Lemma) Let p be a non-degenerate critical point of f . Then, there is

a local coordinate system (y1, . . . , yn) in an open neighborhood U of p, with yi(p) = 0, for all i,

and such that, for all x ∈ U ,

f(x) = f(p)− (y1(x))2 − (y2(x))2 − · · · − (yλ(x))2 + (yλ+1(x))2 + · · ·+ (yn(x))2,

where λ is the index of f at p.

In particular, the point p is an isolated critical point of f .
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The fundamental result of Morse Theory is a description of how N≤b is obtained from N≤a,

where a < b, and where f−1([a, b]) is compact and contains a single critical point of f , and that

critical point is contained in f−1((a, b)) and is non-degenerate. See [25].

Recall that “attaching a λ-cell to a space X” means taking a closed ball of dimension λ, and

attaching it to X by identifying points on the boundary of the ball with points in X.

Theorem 2.5. Suppose that a < b, f−1([a, b]) is compact and contains exactly one critical point

of f , and that this critical point is contained in f−1((a, b)) and is non-degenerate of index λ.

Then, N≤b has the homotopy-type of N≤a with a λ-cell attached, and so Hi(N≤b, N≤a; Z) = 0

if i 6= λ, and Hλ(N≤b, N≤a; Z) ∼= Z.

Thus, functions f : N → R that have only non-degenerate critical points are of great interest,

and so we make a definition.

Definition 2.6. The smooth function f : N → R is a Morse function if and only if all of the

critical points of f are non-degenerate.

Definition 2.6 would not be terribly useful if there were very few Morse functions. However,

there are a number of theorems which tell us that Morse functions are very plentiful. We remind

the reader that “almost all” means except for a set of measure zero.

Theorem 2.7. ([26], p. 11) If g is a C2 function from an open subset U of Rn to R, then, for

almost all linear functions L : Rn → R, the function g + L : U → R is a Morse function.

Theorem 2.8. ([25], Theorem 6.6) Let M be a smooth submanifold of Rn, which is a closed

subset of Rn. For all p ∈ Rn, let Lp : M → R be given by Lp(x) := ||x−p||2. Then, for almost

all p ∈ Rn, Lp is a proper Morse function such that M≤a is compact for all a.

Corollary 2.9. ([25], p. 36) Every smooth manifold M possesses a Morse function g : M → R
such that M≤a is compact for all a ∈ R. Given such a function g, M has the homotopy-type of

a CW-complex with one cell of dimension λ for each critical point of g of index λ.

While we stated the above as a corollary to Theorem 2.8, it also strongly uses two other results:

Theorem 3.5 of [25] and Whitney’s Embedding Theorem, which tells us that any smooth manifold

can be smoothly embedded as a closed subset of some Euclidean space.

We now wish to mention a few complex analytic results which are of importance.

Theorem 2.10. ([25], p. 39-41) Suppose that M is an m-dimensional complex analytic sub-

manifold of Cn. For all p ∈ Cn, let Lp : M → R be given by Lp(x) := ||x− p||2. If x ∈M is a

non-degenerate critical point of Lp, then the index of Lp at x is less than or equal to m.

Corollary 2.9 immediately implies:
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Corollary 2.11. ([25], Theorem 7.2) If M is an m-dimensional complex analytic submanifold

of Cn, which is a closed subset of Cn, then M has the homotopy-type of an m-dimensional

CW-complex. In particular, Hi(M ; Z) = 0 for i > m.

Note that this result should not be considered obvious; m is the complex dimension of

M . Over the real numbers, M is 2m-dimensional, and so m is frequently referred to as the

middle dimension. Thus, the above corollary says that the homology of a complex analytic

submanifold of Cn, which is closed in Cn, has trivial homology above the middle dimension.

The reader might hope that the corollary above would allow one to obtain nice results about

compact complex manifolds; this is not the case. The maximum modulus principle, applied to

the coordinate functions on Cn, implies that the only compact, connected, complex submanifold

of Cn is a point.

Suppose now that M is a connected complex m-manifold, and that c : M → C is a complex

analytic function. Let p ∈ M , and let (z1, ..., zm) be a complex analytic coordinate system for

M in an open neighborhood of p.

Analogous to our definition in the smooth case, we have:

Definition 2.12. The point p is a complex non-degenerate critical point of c provided

that p is a critical point of c, and that the Hessian matrix
(

∂2c
∂zi∂zj

(p)
)
i,j

is non-singular.

There is a complex analytic version of the Morse Lemma, Lemma 2.4:

Lemma 2.13. Let p be a complex non-degenerate critical point of c. Then, there is a local

complex analytic coordinate system (y1, . . . , ym) in an open neighborhood U of p, with yi(p) = 0,

for all i, and such that, for all x ∈ U ,

c(x) = c(p) + (y1(x))2 + (y2(x))2 + · · ·+ (ym(x))2.

In particular, the point p is an isolated critical point of c.

Proposition 2.14. The map c has a complex non-degenerate critical point at p if and only if

c− c(p) has an isolated critical point at p and the Milnor number µc−c(p)(p) equals 1.

The first statement of the following theorem is proved in exactly the same manner as Theo-

rem 2.7; one uses the open mapping principle for complex analytic functions to obtain the second

statement.

Theorem 2.15. If c is a complex analytic function from an open subset U of Cm to C, then,

for almost all complex linear functions L : Cm → C, the function c+L : U → C has no complex

degenerate critical points.

In addition, for all x ∈ U , there exists an open, dense subset W in HomC(Cm,C) ∼= Cm such

that, for all L ∈ W, there exists an open neighborhood U ′ ⊆ U of x such that c + L has no

complex degenerate critical points in U ′.
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Finally, we leave the following result as an exercise for the reader. We denote the real and

imaginary parts of c by Re c and Im c, respectively.

Exercise 2.16. Show that:

(1)

Σc = Σ(Re c) = Σ(Im c)

and that, if c(p) 6= 0, then p ∈ Σc if and only if p ∈ Σ
(
|c|2
)
.

(2) Suppose that p is a complex non-degenerate critical point of c. Prove that the real

functions Re c : M → R and Im c : M → R each have a (real, smooth) non-degenerate

critical point at p of index precisely equal to m, the complex dimension of M .

In addition, if c(p) 6= 0, then prove that the real function |c|2 : M → R also has a

non-degenerate critical point of index m at p.

Now we want to use Morse Theory to sketch the proofs of two important results: one due to

Milnor (see [27] Theorems 6.5 and 7.2, but our statement and proof are different) and one due

to Lê [12].

First, it will be convenient to define the relative polar curve of Hamm, Lê, and Teissier;

see [9] and [36]. Later, we will give the relative polar curve a cycle structure, but – for now – we

give the classical definition as a (reduced) analytic set.

Suppose that U is an open subset of Cn+1 and that f : (U ,0)→ (C, 0) is a complex analytic

function which is not locally constant. Let L denote a non-zero linear form, and let Σ(f, L)

denote the critical locus of the map (f, L) : U → C2.

Theorem 2.17. ([9], [36]) For a generic choice of L:

(1) the analytic set

Γf,L := Σ(f, L)− Σf

is purely 1-dimensional at the origin (this allows for the case where 0 6∈ Γf,L);

(2) dim0 Γf,L ∩ V (L) ≤ 0 and dim0 Γf,L ∩ V (f) ≤ 0 (the < 0 cases allow for Γf,L = ∅);

(3) for each 1-dimensional irreducible component C of Γf,L which contains the origin, for

p ∈ C − {0}, close enough to the origin, f|V (L−L(p))
has an isolated critical point at p,

and

µp

(
f|V (L−L(p))

)
= 1.

Exercise 2.18. Show that dim0 Γf,L ∩ V (f) ≤ 0 if and only if dim0 Γf,L ∩ V (L) ≤ 0, and that

these equivalent conditions imply that Γf,L is purely 1-dimensional at 0. (Hint: Give yourself a

coordinate system on U that has L as one of its coordinates, and parameterize the components

of Γf,L.)
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Remark 2.19. Suppose that we choose (re-choose) our coordinate system (z0, . . . , zn) for Cn+1

so that z0 = L. Then, we may consider the scheme

V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

Then Γf,L consists of those irreducible components of this scheme which are not contained in

Σf . The condition that µp

(
f|V (L−L(p))

)
= 1 in Item 3 of Theorem 2.17 is equivalent to saying

that these irreducible components of the scheme are reduced at points other than the origin.

In light of Theorem 2.17 and Exercise 2.18, we make the following definition.

Definition 2.20. If L is generic enough so that Γf,L is purely 1-dimensional at 0, then we refer

to Γf,L as the relative polar curve (of f with respect to L at the origin), and denote it by Γ1
f,L

(note the superscript by the dimension). In this case, we say that the relative polar curve

exists or, simply, that Γ1
f,L exists.

If dim0 Γf,L ∩ V (f) ≤ 0 (so that, in particular, Γ1
f,L exists), then we say that V (L) (or L

itself) is a Thom slice (for f at 0).

If Item 3 of Theorem 2.17 holds, then we say that the relative polar curve is reduced.

Exercise 2.21. Suppose that dim0 Σf = 0. Conclude that

V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
is a purely 1-dimensional local complete intersection, equal to Γ1

f,z0
and that

dim0 Γ1
f,z0 ∩ V

(
∂f

∂z0

)
= 0.

If you are familiar with intersection numbers, conclude also that

µf (0) = dimC
C{z0, . . . , zn}〈
∂f
∂z0

, . . . , ∂f∂zn

〉 =

(
Γ1
f,z0 · V

(
∂f

∂z0

))
0

.

Now we’re ready to prove, modulo many technical details, two important results on Milnor

fibers.

First, the classic result of Milnor:

Theorem 2.22. ([27], Theorem 6.5 and 7.2) Suppose that dim0 Σf = 0. Then, the Milnor fiber

Ff,0 is homotopy-equivalent to a bouquet of n-spheres, and the number of spheres in the bouquet

is

dimC
C{z0, . . . , zn}〈
∂f
∂z0

, . . . , ∂f∂zn

〉 =

(
Γ1
f,z0 · V

(
∂f

∂z0

))
0

.
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Proof. We sketch a proof.

Recall, from Remark 1.9, that the Milnor tube T := Bε ∩ f−1(Dδ), for 0 < δ � ε � 1, is

contractible. Select a complex number a such that 0 < |a| � δ. We wish to show that T is

obtained from Ff,0 = T ∩f−1(a), up to homotopy, by attaching
(

Γ1
f,z0
· V
(
∂f
∂z0

))
0

(n+1)-cells.

The number a is a regular value of f restricted to the compact manifold with boundary Bε,

i.e., a regular value when restricted to the open ball and when restricted to the bounding sphere.

Consequently, for 0 < η � |a|, the closed disk, Dη(a), of radius η, centered at a, consists of

regular values, and so the restriction of f to a map from T ∩ f−1(Dη(a)) to Dη(a) is a trivial

fibration; in particular, T ∩ f−1(Dη(a)) is homotopy-equivalent to Ff,0. Furthermore, T is

diffeomorphic to T ′ := Bε ∩ f−1(Dδ(a)) and, hence, T ′ is contractible.

We wish to apply Morse Theory to |f − a|2 as its value grows from η to δ. However, there is

no reason for the critical points of f − a to be complex non-degenerate. Thus, we assume that

the coordinate z0 is chosen to be a generic linear form and, for 0 < |t| � η, we consider the map

r := |f − tz0 − a|2 as a map from Bε to R.

Then, r−1[0, η] is homotopy-equivalent to Ff,0, T ′′ := r−1[0, δ] is contractible, r has no critical

points on Sε, and all of the critical points of f − tz0 − a in B◦ε are complex non-degenerate.

Consequently, complex Morse Theory tells us that the contractible set T ′′ is constructed by

attaching (n + 1)-cells to Ff,0. Hence, Ff,0 has the homotopy-type of a finite bouquet of n-

spheres.

How many n-spheres are there? One for each critical point of f − tz0 − a in B◦ε . Therefore,

the number of n-spheres in the homotopy-type is the number of points in

B◦ε ∩ V
(
∂f

∂z0
− t, ∂f

∂z1
, . . . ,

∂f

∂zn

)
= B◦ε ∩ Γ1

f,z0 ∩ V
(
∂f

∂z0
− t
)
,

where 0 < |t| � ε� 1. This is precisely the intersection number(
Γ1
f,z0 · V

(
∂f

∂z0

))
0

.

�

Now we wish to sketch the proof of Lê’s main result of [12] for hypersurface singularities of

arbitrary dimension.

We continue to assume that U is an open subset of Cn+1 and that f : (U ,0) → (C, 0) is a

complex analytic function which is not locally constant. In order to appreciate the inductive

applications of the theorem, one should note that, if s := dim0 Σf ≥ 1, then, for generic z0,

dim0 Σ(f|V (z0)
) = s− 1.

Theorem 2.23. (Lê, [12]) Suppose that dim0 Σf is arbitrary, Then, for a generic non-zero

linear form z0, Ff,0 is obtained up to homotopy from Ff|V (z0)
,0 by attaching

(
Γ1
f,z0
· V (f)

)
0

n-cells.
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Proof. We once again assume that z0 is a coordinate. The main technical issue, which we will

not prove, is that one needs to know that one may use a disk times a ball, rather than a ball

itself, when defining the Milnor fiber. More precisely, we shall assume that, up to homotopy,

Ff,0 is given by

F ′f,0 :=
(
Dδ ×B2n

ε

)
∩ f−1(a),

where 0 < |a| � δ � ε� 1. Note that Ff|V (z0)
,0 = V (z0) ∩ F ′f,0.

The idea of the proof is simple: one considers r := |z0|2 on F ′f,0. As in our previous proof,

there is the problem that r has a critical point at each point where z0 = 0. But, again, as in our

previous proof, 0 is a regular value of z0 restricted to F ′f,0. Hence, for 0 < η � |a|,

r−1[0, η] ∩ F ′f,0 ∼= Ff|V (z0)
,0 × Dη.

One also needs to prove a little lemma that, for a, δ, and ε as we have chosen them, z0 itself

has no critical points on
(
Dδ × S2n−1

ε

)
∩ f−1(a).

Now, one lets the value of r grow from η to δ. Note that the critical points of z0 restricted to

F ′f,0 occur precisely at points in

V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
∩ V (f − a) = Γ1

f,z0 ∩ V (f − a),

and, by the choice of generic z0 all of these critical points will be complex non-degenerate. The

result follows. �

Remark 2.24. Since attaching n-cells does not affect connectivity in dimensions ≤ n − 2,

by inductively applying the above attaching theorem, one obtains that the Milnor fiber of a

hypersurface in Cn+1 with a critical locus of dimension s is (n − s − 1)-connected. Thus, one

recovers the main result of [11].

It is also worth noting that Lê’s attaching theorem leads to a Lefschetz hyperplane result. It

tells one that, for k ≤ n− 2, Hk(Ff,0) ∼= Hk(Ff|V (z0)
,0) and that there is an exact sequence

0→ Hn(Ff,0)→ Zτ → Hn−1(Ff|V (z0)
,0)→ Hn−1(Ff,0)→ 0,

where τ =
(

Γ1
f,z0
· V (f)

)
0
.

Theorem 2.23 seems to have been the first theorem about hypersurface singularities of ar-

bitrary dimension that actually allowed for algebraic calculations. By induction, the theorem

yields the Euler characteristic of the Milnor fiber and also puts bounds on the Betti numbers,

such as bn(Ff,0) ≤
(

Γ1
f,z0
· V (f)

)
0
.

However, if dim0 Σf = 0, then
(

Γ1
f,z0
· V (f)

)
0
> µf (0) (this is not obvious), and so the

question is: are there numbers that we can calculate that are “better” than inductive versions

of
(

Γ1
f,z0
· V (f)

)
0
? We want numbers that are actual generalizations of the Milnor number of

an isolated critical point.

Our answer to this is: yes – the Lê numbers, as we shall see in the next lecture.
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3. Lecture 3: Proper intersection theory and Lê numbers

Given a hypersurface V (f) and a point p ∈ V (f), if dimp Σf = 0, then the Milnor number

of f at p provides a great deal of information about the local ambient topology of V (f) at p.

But now, suppose that s := dimp Σf > 0. What data should replace/generalize a number

associated to a point? For instance, suppose s = 1. A reasonable hope for “good data” to

associate to f at p would be to assign a number to each irreducible component curve of Σf at

p, and also assign a number to p. More generally, if s is arbitrary, one could hope to produce

effectively calculable topologically important data which consists of analytic sets of dimensions

0 through s, with numbers assigned to each irreducible component.

This is what the Lê cycles, Λsf,z, ..., Λ1
f,z, Λ0

f,z ([19], [20], [22]), give you.

We briefly need to discuss what analytic cycles are, and give a few basic properties. Then we

will define the Lê cycles and the associated Lê numbers, and calculate some examples.

We need to emphasize that, in this lecture and the last one, when we write V (α), where α is

an ideal (actually a coherent sheaf of ideals in OU ) we mean V (α) as a scheme, not merely an

analytic set, i.e., we keep in mind what the defining ideal is.

We restrict ourselves to the case of analytic cycles in an open subset U of some affine space

CN . An analytic cycle in U is a formal sum
∑
m
V

[V ], where the V ’s are (distinct) irreducible

analytic subsets of U , the m
V

’s are integers, and the collection {V } is a locally finite collection

of subsets of U . As a cycle is a locally finite sum, and as we will normally be concentrating on

the germ of an analytic space at a point, usually we can safely assume that a cycle is actually a

finite formal sum. If C =
∑
m
V

[V ], we write C
V

for the coefficient of V in C, i.e., C
V

= m
V

.

For clarification of what structure we are considering, we shall at times enclose cycles in square

brackets, [ ] , and analytic sets in a pair of vertical lines, ||; with this notation,∣∣∣∑m
V

[V ]
∣∣∣ =

⋃
m
V
6=0

V.

Occasionally, when the notation becomes cumbersome, we shall simply state explicitly whether

we are considering V as a scheme, a cycle, or a set.

Essentially all of the cycles that we will use will be of the form
∑
m
V

[V ], where all of the V ’s

have the same dimension d (we say that the cycle is of pure dimension d) and m
V
≥ 0 for all V

(a non-negative cycle).

We need to consider not necessarily reduced complex analytic spaces (analytic schemes)

(X,OX) (in the sense of [8] and [7]), where X ⊆ U . Given an analytic space, (X,O
X

), we

wish to define the cycle associated to (X,O
X

). The cycle is defined to be the sum of the irre-

ducible components, V , each one with a coefficient m
V

, which is its geometric multiplicity, i.e.,

m
V

is how many times that component should be thought of as being there.



NON-ISOLATED HYPERSURFACE SINGULARITIES 17

In the algebraic context, this is given by Fulton in section 1.5 of [6] as

[X] :=
∑

m
V

[V ],

where the V ’s run over all the irreducible components of X, and m
V

equals the length of the

ring O
V,X

, the Artinian local ring of X along V . In the analytic context, we wish to use the

same definition, but we must be more careful in defining the m
V

. Define m
V

as follows. Take a

point p in V . The germ of V at p breaks up into irreducible germ components (Vp)i. Take any

one of the (Vp)i and let m
V

equal the Artinian local length of the ring (O
X,p)(Vp)i (that is, the

local ring of X at p localized at the prime corresponding to (Vp)i). This number is independent

of the point p in V and the choice of (Vp)i.

Note that, in particular, if p is an isolated point in V (α), then the coefficient of p (really

{p}) in [V (α)] is given by

[V (α)]p = dimC
C{z0 − p0, . . . , zn − pn}

α
.

Two cycles C :=
∑
m
V

[V ] and D :=
∑
m
W

[W ], of pure dimension a and b, respectively, in

U are said to intersect properly if and only if, for all V and W , dim(V ∩W ) = a + b − N
(recall that N is the dimension of U).

When C and D intersect properly, there is a well-defined intersection product which yields

an intersection cycle (not a rational equivalence class); this intersection cycle is denoted by

(C ·D;U) or simply C ·D if the ambient complex manifold is clear. See Fulton [6], Section 8.2

and pages 207-208. Recalling our earlier notation, if V is an irreducible component of |C| ∩ |D|,
then (C ·D)

V
is the coefficient of V in the intersection cycle. In particular, if C and D intersect

properly in an isolated point p, then (C ·D)p is called the intersection number of C and D

at p.

We will now give some properties of intersection cycles and numbers. All of these can found

in, or easily derived from, [6]. We assume that all intersections written below are proper.

(1) Suppose that Y and Z are irreducible analytic sets, and that V is an irreducible com-

ponent of their proper intersection. Then, ([Y ] · [Z])V ≥ 1, with equality holding if and

only if, along a generic subset of V , Y and Z are smooth and intersect transversely.

(2) If f, g ∈ OU , then [V (fg)] = [V (f)] + [V (g)]; in particular, [V (fm)] = m[V (f)].

(3) C ·D = D · C, (C ·D) · E = C · (D · E), and

C ·
∑
i

miDi =
∑
i

mi(C ·Di).

(4) Locality: Suppose that Z is a component of |C ·D| and that W is an open subset of U
such that Z ∩W 6= ∅ and Z ∩W is irreducible in W. Then,

(C ∩W · D ∩W; W)Z∩W = (C · D; U)Z
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(5) If f contains no isolated or embedded components of V (α), then V (α)·V (f) = V (α+〈f〉).
In particular, if f1, f2, . . . fk is a regular sequence, then

V (f1) · V (f2) · . . . · V (fk) = [V (f1, f2, . . . , fk)].

(6) Reduction to the normal slice: Let Z be a d-dimensional component of C ·D. Let

p be a smooth point of Z. Let M be a normal slice to Z at p, i.e., let M be a complex

submanifold of U which transversely intersects Z in the isolated point p. Furthermore,

assume that M transversely the smooth parts of |C| and |D| in an open neighborhood

of p. Then,

(C · D; U)Z =
(
(C ·M) · (D ·M); M)p.

(7) Conservation of number: Let E be a purely k-dimensional cycle in U . Let g1(z, t),

g2(z, t), . . . , gk(z, t) be in OU×D◦ , for some open disk D◦ containing the origin in C. For

fixed t ∈ D◦, let Ct be the cycle [V (g1(z, t), g2(z, t), . . . , gk(z, t))] in U . Assume that E

and C0 intersect properly in the isolated point p.

Then,

(E · C0)p =
∑

q∈B◦ε (p)∩|E|∩|Ct|

(E · Ct)q ,

for |t| � ε� 1.

(8) Suppose that Z is a curve which is irreducible at p. Let r(t) be a reduced parametrization

of the germ of Z at p such that r(0) = p. (Here, by reduced, we mean that if r(t) =

p + a1t + a2t
2 + · · · , then the exponents of the non-zero powers of t with non-zero

coefficients have no common factor, other than 1.) Suppose that f ∈ OU is such that

that V (f) intersects Z in the isolated point p. Then,

(Z · V (f))p = multt f(r(t)),

that is, the exponent of the lowest power of t that appears in f(r(t)).

Exercise 3.1. Use the last property of intersection numbers above to show the following:

(a) Suppose that C is a purely 1-dimensional cycle, and that C properly intersects V (f)

and V (g) at a point p. Suppose that (C · V (f))p < (C · V (g))p. Then, C properly

intersects V (f + g) at p and (C · V (f + g))p = (C · V (f))p.

(b) Suppose that C is a purely 1-dimensional cycle, that |C| ⊆ V (f), and that C

properly intersects V (g) at a point p. Then, C properly intersects V (f + g) at p

and (C · V (f + g))p = (C · V (g))0.

We are now (almost) ready to define the Lê cycles and Lê numbers. However, first, we need

a piece of notation and we need to define the (relative) polar cycles.
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Suppose once again that U is an open neighborhood of the origin in Cn+1, and that

f : (U ,0)→ (C, 0) is a complex analytic function, which is not locally constant. We use co-

ordinates z = (z0, . . . , zn) on U . We will at times assume, after possibly a linear change of

coordinates, that z is generic in some sense with respect to f at 0. As before, we let s := dim0 Σf .

If C =
∑
V mV [V ] is a cycle in U and Z is an analytic subset of U , then we let

C⊆Z =
∑
V⊆Z

mV [V ] and C 6⊆Z =
∑
V 6⊆Z

mV [V ].

Definition 3.2. For 0 ≤ k ≤ n+ 1, we define the k-th polar cycle of f with respect to z

to be

Γkf,z :=

[
V

(
∂f

∂zk
,
∂f

∂zk+1
, . . . ,

∂f

∂zn

)]
6⊆Σf

.

Here, by Γn+1
f,z , we mean simply [U ]. Also, note that Γ0

f,z = 0.

As a set, this definition of Γ1
f,z agrees with our earlier definition of Γ1

f,z0
; however, now we

give this relative polar curve a cycle structure. If z0 is generic enough, then all of the coefficients

of components of the cycle Γ1
f,z will be 1, but we typically do not want to assume this level of

genericity.

Also note that every irreducible component of V
(
∂f
∂zk

, ∂f
∂zk+1

, . . . , ∂f∂zn

)
necessarily has dimen-

sion at least k; hence, for k ≥ s+1, there can be no components contained in Σf near the origin.

Therefore, near the origin, for k ≥ s+ 1,

Γkf,z :=

[
V

(
∂f

∂zk
,
∂f

∂zk+1
, . . . ,

∂f

∂zn

)]
.

Exercise 3.3. In this exercise, you will be asked to prove what we generally refer to as the

Teissier trick, since it was first proved by Teissier in [36] in the case of isolated critical points,

but the proof is the same for arbitrary s.

Suppose that dim0 Γ1
f,z ∩ V (f) ≤ 0. Then, dim0 Γ1

f,z ∩ V (z0) ≤ 0, dim0 Γ1
f,z ∩ V

(
∂f
∂z0

)
≤ 0,

and (
Γ1
f,z · V (f)

)
0

=
(
Γ1
f,z · V (z0)

)
0

+

(
Γ1
f,z · V

(
∂f

∂z0

))
0

.

(Hint: Parameterize the irreducible components of the polar curve and use the Chain Rule for

differentiation.)

In particular, if dim0 Γ1
f,z ∩ V (f) ≤ 0 and Γ1

f,z 6= 0, then

(
Γ1
f,z · V (f)

)
0
>

(
Γ1
f,z · V

(
∂f

∂z0

))
0

.
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Exercise 3.4. Suppose that k ≤ n, and that Γk+1
f,z is purely (k+1)-dimensional and is intersected

properly by V
(
∂f
∂zk

)
.

Prove that (
Γk+1
f,z · V

(
∂f

∂zk

))
6⊆Σf

= Γkf,z.

Definition 3.5. Suppose that k ≤ n, and that Γk+1
f,z is purely (k + 1)-dimensional and is inter-

sected properly by V
(
∂f
∂zk

)
.

Then we say that the k-dimensional Lê cycle exists and define it to be

Λkf,z :=

(
Γk+1
f,z · V

(
∂f

∂zk

))
⊆Σf

.

Hence,

Γk+1
f,z · V

(
∂f

∂zk

)
= Γkf,z + Λkf,z.

Remark 3.6. Note that, if Λsf,z exists, then

Γs+1
f,z = V

(
∂f

∂zs+1
, . . . ,

∂f

∂zn

)
is purely (s + 1)-dimensional and, for all k ≥ s, Γk+1

f,z is purely (k + 1)-dimensional and is

intersected properly by V
(
∂f
∂zk

)
.

The point is that saying that Λsf,z exists implies that, for s+ 1 ≤ k ≤ n, Λkf,z exists and is 0.

Furthermore, you should note that if Λkf,z for all k ≤ s, then each Λkf,z is purely k-dimensional

and Σf =
⋃
k≤s

∣∣∣Λkf,z∣∣∣.
Exercise 3.7. We wish to use intersection cycles to quickly show that the Milnor number is

upper-semicontinuous in a family.

(1) Suppose that dim0 Σ
(
f|V (z0)

)
≤ 0. Show that

µ0

(
f|V (z0)

)
=
(
Γ1
f,z · V (z0)

)
0

+
(
Λ1
f,z · V (z0)

)
0
.

(2) Suppose that we have a complex analytic function F : (D◦ × U ,D◦ × {0}) → (C, 0).

For each t ∈ D◦, define ft : (U ,0) → (C, 0) by ft(z) := F (t, z), and assume that

dim0 Σft = 0. Thus, ft defines a one-parameter family of isolated singularities.

Show, for all t such that |t| is sufficiently small, that µ0(f0) ≥ µ0(ft), with equality

if and only Γ1
f,z = 0 and D◦ × U is the only component of ΣF (near 0).
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Definition 3.8. Suppose that, for all k such that 0 ≤ k ≤ n, Λkf,z exists, and

dim0 Λkf,z ∩ V (z0, . . . , zk−1) ≤ 0 and dim0 Γkf,z ∩ V (z0, . . . , zk−1) ≤ 0.

Then, we say that the Lê numbers and polar numbers of f with respect to z exist in a

neighborhood of 0 and define them, respectively, for 0 ≤ k ≤ n and for each p = (p0, . . . , pn)

near the origin, to be

λkf,z(p) :=
(
Λkf,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p

and

γkf,z(p) :=
(
Γkf,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p
.

Remark 3.9. It is the Lê numbers which will serve as our generalization of the Milnor of an

isolated critical point.

However, the existence of the polar numbers tells us that our coordinates are generic enough

for many of our results to be true. In general, the condition that we will require of our coordinates

– which is satisfied generically – will be that the Lê and polar numbers, λkf,z(0) and γkf,z(0),

exist for 1 ≤ k ≤ s. (The existence when k = 0 is automatic.) Note that when s = 0, there is

no requirement.

Exercise 3.10. Suppose that s = 1. Show that the condition that λ1
f,z(0) and γ1

f,z(0) exist is

equivalent to requiring dim0 Σ
(
f|V (z0)

)
= 0.

Now we wish to look at three examples of Lê cycle and Lê number calculations.

Example 3.11. Suppose that s = 0. Then, regardless of the coordinate system z, the only

possibly non-zero Lê number is λ0
f,z(0). Moreover, as V

(
∂f
∂z0

, ∂f∂z1 , . . . ,
∂f
∂zn

)
is 0-dimensional,

Γ1
f,z = V

(
∂f
∂z1

, . . . , ∂f∂zn

)
is a 1-dimensional complete intersection, and so has no components

contained in Σf and has no embedded components.

Therefore,

λ0
f,z(0) =

(
Γ1
f,z · V

(
∂f

∂z0

))
0

=

(
V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
· V
(
∂f

∂z0

))
0

=(
V

(
∂f

∂z0
, . . . ,

∂f

∂zn

))
0

= the Milnor number of f at 0.

Example 3.12. Let f = y2 − xa − txb, where a > b > 1. We fix the coordinate system (t, x, y)

and will suppress any further reference to it.

Σf = V (−xb, −axa−1 − btxb−1, 2y) = V (x, y).

Γ2
f = V

(
∂f

∂y

)
= V (2y) = V (y).
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Γ2
f · V

(
∂f

∂x

)
= V (y) · V (−axa−1 − btxb−1) = V (y) · (V (−axa−b − bt) + V (xb−1)) =

V (−axa−b − bt, y) + (b− 1)V (x, y) = Γ1
f + Λ1

f .

Γ1
f · V

(
∂f

∂t

)
= V (−axa−b − bt, y) · V (−xb) = bV (t, x, y) = b[0] = Λ0

f .

Thus, λ0
f (0) = b and λ1

f (0) = b− 1.

Notice that the exponent a does not appear; this is actually good, for f = y2 − xa − txb =

y2 − xb(xa−b − t) which, after an analytic coordinate change at the origin, equals y2 − xbu.

Example 3.13. Let f = y2 − x3 − (u2 + v2 + w2)x2 and fix the coordinates (u, v, w, x, y).

Σf = V (−2ux2, −2vx2, −2wx2, −3x2 − 2x(u2 + v2 + w2), 2y) = V (x, y).

As Σf is three-dimensional, we begin our calculation with Γ4
f .

Γ4
f = V (−2y) = V (y).

Γ4
f · V

(
∂f

∂x

)
= V (y) · V (−3x2 − 2x(u2 + v2 + w2)) =

V (−3x− 2(u2 + v2 + w2), y) + V (x, y) = Γ3
f + Λ3

f .

Γ3
f · V

(
∂f

∂w

)
= V (−3x− 2(u2 + v2 + w2), y) · V (−2wx2) =

V (−3x− 2(u2 + v2), w, y) + 2V (u2 + v2 + w2, x, y) = Γ2
f + Λ2

f .

Γ2
f · V

(
∂f

∂v

)
= V (−3x− 2(u2 + v2), w, y) · V (−2vx2) =

V (−3x− 2u2, v, w, y) + 2V (u2 + v2, w, x, y) = Γ1
f + Λ1

f .

Γ1
f · V

(
∂f

∂u

)
= V (−3x− 2u2, v, w, y) · V (−2ux2) =

V (u, v, w, x, y) + 2V (u2, v, w, x, y) = 5[0] = Λ0
f .

Hence, Λ3
f = V (x, y), Λ2

f = 2V (u2+v2+w2, x, y) = a cone (as a set), Λ1
f = 2V (u2+v2, w, x, y),

and Λ0
f = 5[0]. Thus, at the origin, λ3

f = 1, λ2
f = 4, λ1

f = 4, and λ0
f = 5.

Note that Λ1
f depends on the choice of coordinates - for, by symmetry, if we re-ordered u, v,

and w, then Λ1
f would change correspondingly. Moreover, one can check that this is a generic

problem.

Such “non-fixed” Lê cycles arise from the absolute polar varieties of Lê and Teissier (see [14],

[37], [38]) of the higher-dimensional Lê cycles. For instance, in the present case, Λ2
f is a cone, and
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its one-dimensional polar variety varies with the choice of coordinates, but generically always

consists of two lines; this is the case for Λ1
f as well. Though the Lê cycles are not even generically

fixed, the Lê numbers are, of course, generically independent of the coordinates.

Of course, you should be asking yourself: what does the calculation of the Lê numbers tell

us? We shall discuss this in the next lecture.

4. Lecture 4: Properties of Lê numbers and vanishing cycles

Now that we know what Lê cycles and Lê numbers are, the question is: what good are they?

Throughout this section, we will be in our usual set-up. We let U be an open neighborhood

of the origin in Cn+1, f : (U ,0) → (C, 0) is a complex analytic function which is not locally

constant, s := dim0 Σf , and z = (z0, . . . , zn) is a coordinate system on U .

We shall also assume throughout this section, for all k ≤ s, that λkf,z(0) and γkf,z(0)

exist. We assume that U is chosen (or re-chosen) that dim Σf = s (“globally” in U)

and that λkf,z(p) and γkf,z(p) exist for all k ≤ s and p ∈ U .

All of the results on Lê numbers given here can be found in [22]. However, we have recently

replaced our previous assumptions with coordinates being pre-polar with the condition that Lê

numbers and polar numbers exist (as assumed above).

Let us start with the generalization of Milnor’s result that the Milnor fiber at an isolated

critical point has the homotopy-type of a bouquet of spheres.

Theorem 4.1. The Milnor fiber Ff,0 has the homotopy-type obtained by beginning with a point

and successively attaching λs−kf,z (0) (n− s+ k)-cells for 0 ≤ k ≤ s.
In particular, there is a chain complex

0→ Zλ
s
f,z(0) → Zλ

s−1
f,z (0) → · · · → Zλ

0
f,z(0) → 0

whose cohomology at the λkf,z(0) term is isomorphic to the reduced integral cohomology

H̃n−k(Ff,0).

Thus, the Euler characteristic of the Milnor fiber is given by

χ(Ff,0) = 1 +
∑

0≤k≤s

(−1)n−kλkf,z(0).

Exercise 4.2. Let us go back and see what this tells us about our previous examples.

(1) Look back at Example 3.12. We calculated that λ0
f,z(0) = b and λ1

f,z(0) = b− 1. Deter-

mine precisely the homology/cohomology of Ff,0. Compare this with what Theorem 4.1

tells us.

(2) Look back at Example 3.13. What is the Euler characteristic of the Milnor fiber at the

origin? What upper-bounds do you obtain for the ranks of H1(Ff,0) and H4(Ff,0)?
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In a recent paper with Lê [15], we showed the upper-bound of λsf,z(0) on the rank of

H̃n−s(Ff,0) is obtained only in trivial cases, as given in the following theorem:

Theorem 4.3. Suppose that the rank of H̃n−s(Ff,0) is λsf,z(0). Then, near 0, the critical locus

Σf is itself smooth, and Λkf,z = 0 for 0 ≤ k ≤ s− 1.

This is equivalent saying that f defines a family, parameterized by Σf , of isolated hypersurface

singularities with constant Milnor number.

Now we want to look at the extent to which the constancy of the Lê numbers in a family

controls the local, ambient topology in the family.

Theorem 4.4. Suppose that we have a complex analytic function F : (D◦×U ,D◦×{0})→ (C, 0).

For each t ∈ D◦, define ft : (U ,0) → (C, 0) by ft(z) := F (t, z), and let s = dim0 Σf0. Suppose

that the coordinates z are chosen so that, for all t ∈ D◦, for all k such that k ≤ s, λkft,z(0) and

γkft,z(0) exist, and assume that, for each k, the value of λkft,z(0) is constant as a function of t.

Then,

(1) The pair (D◦ × U − Σf, D◦ × {0}) satisfies Thom’s af condition at 0, i.e., all of the

limiting tangent spaces from level sets of f at the origin contain the t-axis (or, actually,

its tangent line).

(2) (a) The homology of the Milnor fibre of ft at the origin is constant for all t small.

(b) If s ≤ n−2, then the fibre-homotopy-type of the Milnor fibrations of ft at the origin

is constant for all t small;

(c) If s ≤ n−3, then the diffeomorphism-type of the Milnor fibrations of ft at the origin

is constant for all t small.

Remark 4.5. Note that we do not conclude the constancy of the local, ambient topological-type.

However, part of what the theorem says is that, if s ≤ n− 3, then at least the homeomorphism-

type (in fact, diffeomorphism-type) of the small sphere minus the real link (i.e., the total space

of the Milnor fibration) is constant.

It was an open question until 2004-2005 if the constancy of the Lê numbers implies constancy

of the topological-type. In [3], Bobadilla proved this is the case when s = 1, but, in [2], he

produced a counterexample when s = 3. On the other hand, Bobadilla did show that, for

general s, in addition to the Milnor fibrations being constant, the homotopy-type of the real link

in a family with constant Ln̂umbers is also constant.

Theorem 4.1 and Theorem 4.4 are the reasons why one wants algorithms for calculating Lê

numbers.

Exercise 4.6. The formulas in this exercise allow one to reduce some problems on a hypersurface

to problems on a hypersurface with a singular set of smaller dimension. Suppose that s ≥ 1.
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(1) Near 0, Σ(f|V (z0)
) = Σf ∩V (z0), and has dimension s−1. Let z̃ = (z1, . . . , zn) on V (z0).

Then,

λ0
f|V (z0)

,z̃(0) = γ1
f,z(0) + λ1

f,z(0)

and, for all k ≥ 1,

λkf|V (z0)
,z̃(0) = λk+1

f,z (0).

(2) Suppose that γ1
f,z(0) = 0 or that j > 1 +

(
λ0
f,z(0)/γ1

f,z(0)
)
. Let z̃ denote the “rotated”

coordinate system (z1, z2, . . . , zn, z0). Then, near 0, Σ(f + zj0) = Σf ∩ V (z0), and has

dimension s− 1. Furthermore,

λ0
f+zj0,z̃

(0) = λ0
f,z(0) + (j − 1)λ1

f,z(0)

and, for all k ≥ 1,

λk
f+zj0,z̃

(0) = (j − 1)λk+1
f,z (0).

We will now discuss the Lê numbers from a very different, very sophisticated, point of view.

We refer you once again to [22] if you wish to see many results for calculating Lê numbers.

We want to discuss the relationship between the Lê numbers and the vanishing cycles as

a bounded, constructible complex of sheaves. As serious references to complex of sheaves, we

recommend [10] and [4]. Here, we will try to present enough material to give you the flavor of

the machinery and results.

Suppose that f has a non-isolated critical point at the origin. Then, at each point in Σf ,

we have a Milnor fiber and a Milnor fibration. The question is: are there restrictions on the

topology of the Milnor fiber at 0 imposed by the Milnor fibers at nearby points in Σf?

This is a question of how local data patches together to give global data, which is exactly what

sheaves encode. So it is easy to believe that sheaves would be useful in describing the situation.

The stalk of a sheaf at a point describes the sheaf, in some sense, at the specified point. In

our setting, at a point p ∈ Σf , we would like for the stalk at p to give us the cohomology of

Ff,p. This means that, after we take a stalk, we need a chain complex. Thus, one is lead to

consider complexes of sheaves, where the stalks of the individual sheaves are simply Z-modules

(we could use other base rings). Note that we are absolutely not looking at coherent sheaves

of modules over the structure sheaf of an analytic space. We should mention now that, for the

most elegant presentation, it is essential that we allow our complex to have non-zero terms in

negative degrees.

As a quick example, on a complex space X, one important complex of sheaves is simply

referred to as the constant sheaf, Z•X . This complex of sheaves is the constant sheaf ZX in

degree 0 and 0 in all other degrees. Frequently, we will shift this complex; the complex of

sheaves Z•X [k] is the complex which has ZX in degree −k (note the negation) and 0 in all other

degrees.
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Suppose that we have a complex of sheaves (of Z-modules) A• on a space X. There are three

cohomologies associated to A•:

(1) The sheaf cohomology, that is, the cohomology of the complex: Hk(A•).

(2) The stalk cohomology at each point p ∈ X: Hk(A•)p. This is obtained by either taking

stalks first and then cohomology of the resulting complex of Z-modules or by first taking

the cohomology sheaves and then taking their stalks.

(3) The hypercohomology of X with coefficients in A•: Hk(X; A•). This is a generalization

of sheaf cohomology of the space. As an example, Hk(X;Z•X) simply yields the usual

integral cohomology of X in degree k.

For all of these cohomologies, the convention on shifting tells us that the index is added to

the shift to produce the degree of the unshifted cohomology, e.g., Hk(A•[m]) ∼= Hk+m(A•).

It is standard that, for a subspace Y ⊆ X, one writes Hk(Y ; A•) for the hypercohomology

of Y with coefficients in the restriction of A• to Y ; the point being that the restriction of the

complex is usually not explicitly written in this context.

Our complexes of sheaves will be constructible. One thing that this implies is that restriction

induces an isomorphism between the hypercohomology in a small ball and the stalk cohomology

at the center of the ball, i.e., for all p ∈ X, there exists ε > 0 such that, for all k,

Hk(B◦ε (p); A•) ∼= Hk(A•)p.

If W is an open subset of X (and in other cases), the hypercohomology Hk(X,W; A•) of the

pair (X,W) is defined, and one has the expected long exact sequence

· · · → Hk−1(W; A•)→ Hk(X,W; A•)→ Hk(X; A•)→ Hk(W; A•)→ . . . .

The k-th support of A•, suppk A•, is defined to be the closure of the set of points where the

stalk cohomology in degree k is not zero, i.e.,

suppk A• := {p ∈ X | Hk(A•)p 6= 0}.

The support of A•, supp A•, is given by

supp A• :=
⋃
k

suppk A• = {p ∈ X | H∗(A•)p 6= 0}.

(We used above that A• is bounded, so that the union is finite.)

The k-cosupport of A•, cosuppk A•, is defined to be

cosuppk A• := {p ∈ X | Hk
(
B◦ε (p), B◦ε (p)− {p}; A•

)
}.

A perverse sheaf (using middle perversity) P• is a bounded, constructible complex of sheaves

which satisfies two conditions: the support and cosupport conditions, as given below. We remark

that we set the dimension of the empty set to be −∞, so that saying that a set has negative

dimension means that the set is empty.
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The support and cosupport conditions for a perverse sheaf are that, for all k,

(1) (support condition) dim suppk A• ≤ −k;

(2) (cosupport condition) dim cosuppk A• ≤ k.

Note that the stalk cohomology is required to be 0 in positive degrees.

If s := dim supp P•, then the stalk cohomology is possibly non-zero only in degrees k where

−s ≤ k ≤ 0. In particular, if p is an isolated point in the support of P•, then the stalk

cohomology of P• at p is concentrated in degree 0. Furthermore, the cosupport condition tells

us that, for all p ∈ X, for negative degrees k,

Hk
(
B◦ε (p), B◦ε (p)− {p}; P•

)
= 0.

Note that the restriction of a perverse sheaf to its support remains perverse.

Exercise 4.7. Suppose that M is a complex manifold of pure dimension d. Show that the

shifted constant sheaf Z•M [d] is perverse.

What does any of this have to do with the Milnor fiber and Lê numbers?

Given an analytic f : (U ,0) → (C, 0), there are two functors, ψf [−1] and φf [−1], from

the category of perverse sheaves on U to the category of perverse sheaves on V (f) called the

(shifted) nearby cycles along f and the vanishing cycles along f , respectively. These

functors encode, on a chain level, the (hyper-)cohomology of the Milnor fiber and “reduced”

(hyper-)cohomology of the Milnor fiber, and how they patch together. For all p ∈ V (f), the

stalk cohomology is what we want:

Hk (ψf [−1]P•)p
∼= Hk−1(Ff,p; P•)

and

Hk (φf [−1]P•)p
∼= Hk(B◦ε (p), Ff,p; P•).

Exercise 4.8. Recall from the previous exercise that Z•U [n + 1] is perverse. As φf [−1] takes

perverse sheaves to perverse sheaves, it follows that the complex of sheaves φf [−1]Z•U [n + 1] is

a perverse sheaf on V (f).

(1) Show that, for all p ∈ V (f), for all k, Hk(φf [−1]Z•U [n + 1])p ∼= H̃n+k(Ff,p;Z), and so

suppφf [−1]Z•U [n+ 1] = V (f) ∩ Σf .

(2) Explain why this tells you that H̃j(Ff,0;Z) is possibly non-zero only for n− s ≤ j ≤ n.

Example 4.9. In this example, we wish to show some of the power of perverse techniques.

Suppose that s = 1, so that Σf is a curve at the origin. Let Ci denote the irreducible

components of Σf at 0. Then, Λ1
f,z =

∑
i µ
◦
i [Ci], where µ◦i is the Milnor number of f restricted

to a transverse hyperplane slice to Ci at any point on Ci − {0} near 0. Furthermore, in a

neighborhood of 0, Ci − {0} is a punctured disk, and there is an internal monodromy action

hi : Zµ◦i → Zµ◦i induced by following the Milnor fiber once around this puncture.
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Let P• := (φf [−1]Z•U [n+ 1])|Σf . This is a perverse sheaf on Σf . We are going to look at the

long exact hypercohomology sequence of the pair(
Bε ∩ Σf, (Bε − {0}) ∩ Σf

)
,

for small ε. For convenience of notation, we will assume that we are working in a small enough

ball around the origin, and replace Bε∩Σf with simply Σf , and (Bε−{0})∩Σf with Σf−{0} =⋃
i(Ci − {0}).
Because we are working in a small ball,

Hk(Σf ; P•) ∼= Hk(P•)0 ∼= H̃n+k(Ff,0;Z).

Furthermore, P• restricted to Ci − {0} is a local system (a locally constant sheaf), shifted

into degree −1 with stalk cohomology Zµ◦i . Hence, H−1(Ci − {0}; P•) ∼= ker{id−hi}, and

H−1
(⋃
i

(Ci − {0}); P•
) ∼= ⊕

i

H−1((Ci − {0}); P•) ∼=
⊕
i

ker{id−hi}.

Finally note that the cosupport condition tells us that H−1(Σf,Σf − {0}; P•) = 0.

Thus, the portion of the long exact sequence on hypercohomology

H−1(Σf,Σf − {0}; P•)→ H−1(Σf ; P•)→ H−1(Σf − {0}; P•)→

becomes

0→ H̃n−1(Ff,0;Z)→
⊕
i

ker{id−hi} → .

Even without knowing the hi’s, this tells us that the rank of H̃n−1(Ff,0;Z) is at most
∑
i µ
◦
i .

Note that, if all of the components of Σf are smooth, then λ1
f,z(0) =

∑
i µ
◦
i , and this bound

agrees with what we obtain from Theorem 4.1, but – if one of the Ci’s is singular at 0 – then

this example produces a better bound.

This result is quite complicated to prove without using perverse sheaves; see [33].

We have yet to tell you what the vanishing cycles have to do with the Lê numbers.

Suppose that X is a complex analytic subspace of U , that P• is a perverse sheaf on X, and

that p ∈ X. For a generic affine linear form L such that L(p) = 0, the point p is an isolated

point in the support of φL[−1]P•; for instance, L can be chosen so that V (L) is transverse to

all of the strata – near p but not at p – of a Whitney stratification with respect to which P• is

constructible. For such an L, since p is an isolated point in the support of the perverse sheaf

φL[−1]P•, the stalk cohomology of φL[−1]P• at p is concentrated in degree 0.

Our coordinates (z0, z1, . . . , zn) have been chosen so that all of the iterated vanishing and

nearby cycles below have 0 as an isolated point in their support.

As we showed in [21], the connection with the Lê numbers is:

λ0
f,z(0) = rankH0

(
φz0 [−1]φf [−1]Z•U [n+ 1]

)
,

λ1
f,z(0) = rankH0

(
φz1 [−1]ψz0 [−1]φf [−1]Z•U [n+ 1]

)
,
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...

λsf,z(0) = rankH0
(
φzs [−1]ψzs−1 [−1] . . . ψz0 [−1]φf [−1]Z•U [n+ 1]

)
.

The chain complex in Theorem 4.1 can be derived as a formal consequence of the equalities

above.

5. Appendix

Curve Selection Lemma:

The following lemma is an extremely useful tool; see [27], §3 and [18], §2.1. The complex

analytic statement uses Lemma 3.3 of [27]. Below,
◦
Dδ

denotes an open disk of radius δ > 0

centered at the origin in C.

Lemma 5.1. (Curve Selection Lemma) Let p be a point in a real analytic manifold M . Let

Z be a semianalytic subset of M such that p ∈ Z. Then, there exists a real analytic curve

γ : [0, δ)→M with γ(0) = p and γ(t) ∈ Z for t ∈ (0, δ).

Let p be a point in a complex analytic manifold M . Let Z be a constructible subset of M such

that p ∈ Z. Then, there exists a complex analytic curve γ :
◦
Dδ
→M with γ(0) = p and γ(t) ∈ Z

for t ∈
◦
Dδ
− {0}.

Cones and joins:

Recall that the abstract cone on a topological space Y is the identification space

c(Y ) :=
Y × [0, 1]

Y × {1}
,

where the point (the equivalence class of) Y × {1} is referred to as the cone point. Then define

the open cone to be c◦(Y ) := c(Y )\
(
{0} × Y

)
.

If Z ⊆ Y , then c(Z) ⊆ c(Y ), where we consider the two cone points to be the same, and

denote this common cone point simply by ∗. We define the cones on the pair (Y,Z) to be triples,

which include the cone point:

c(Y,Z) := (c(Y ), c(Z), ∗) and c◦(Y,Z) := (c◦(Y ), c◦(Z), ∗).

The join X ∗Y of topological spaces X and Y is the space X×Y × [0, 1], where at one end the

interval “X is crushed to a point” and at the other end of the interval “Y is crushed to a point”.

This means that we take the identification space obtained from X × Y × [0, 1] by identifying

(x1, y, 0) ∼ (x2, y, 0) for all x1, x2 ∈ X and y ∈ Y , and also identifying (x, y1, 1) ∼ (x, y2, 1) for

all x ∈ x and y1, y2 ∈ Y .

The join of a point with a space X is just the cone on X. The join of the 0-sphere (two

discrete points) with X is the suspension of X.
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Locally trivial fibrations:

Suppose that X and Y are smooth manifolds, where X may have boundary, but Y does not.

A smooth map g : X → Y is a smooth trivial fibration if and only if there exists a smooth

manifold F , possibly with boundary, and a diffeomorphism α : F × Y → X such that the

following diagram commutes:

F × Y X

Y,

α
∼=

π
g

where π denotes projection.

A smooth map g : X → Y is a smooth locally trivial fibration if and only if, for all y ∈ Y ,

there exists an open neighborhood B of y in Y such that the restriction g|g−1(B)
: g−1(B) → B

is a trivial fibration.

If the base space Y is connected and g : X → Y is a smooth locally trivial fibration, it is an

easy exercise to show that the diffeomorphism-type of the fibers g−1(y) is independent of y ∈ Y ;

in this case, any fiber is referred to as simply the fiber of the fibration.

It is a theorem that a locally trivial fibration over a contractible base space is, in fact, a trivial

fibration.

Now we state the theorem of Ehresmann [5], which yields a common for method for concluding

that a map is a locally trivial fibration.

Theorem 5.2. Suppose that N is a smooth manifold, possibly with boundary, P is a smooth

manifold, and f : N → P is a proper submersion. Then, f it is a smooth, locally trivial fibration.

Locally trivial fibrations over a circle are particularly easy to characterize. Begin with a

smooth fiber F and a diffeomorphism τ : F → F , called a characteristic diffeomorphism. Then

there is a smooth locally trivial fibration

p :
F × [0, 1]

(x, 0) ∼ (τ(x), 1)
→ S1 ⊆ C

given by p([x, t]) := e2πit.

Every smooth locally trivial fibration g over a circle is diffeomorphic to one obtained as above,

but the characteristic diffeomorphism τ is not uniquely determined by g; however, the maps on

the homology and cohomology of F induced by τ are independent of the choice of τ . These

induced maps are called the monodromy automorphisms of g.
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Séminaire sur les Singularités (Paris, 1976–1977) Publ. Math. Univ. Paris VII, pages 87–95, 1980.
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[20] Massey, D. The Lê Varieties, II. Invent. Math., 104:113–148, 1991.
[21] Massey, D. Numerical Invariants of Perverse Sheaves. Duke Math. J., 73(2):307–370, 1994.
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