Singularities and Characteristic Classes for Differentiable Maps II

Toru Ohmoto

Hokkaido University

July 25, 2012

Bom dia! おはよう!

Tudo bem ? 元気ですか?

Menu

Yesterday: main points were

- Definition of Thom polynomials for mono-singularities
- Torus action and Rimanyi's restriction method

Menu

Yesterday: main points were

- Definition of Thom polynomials for mono-singularities
- Torus action and Rimanyi's restriction method

Today

- Thom polynomials for multi-singularities (M. Kazarian's theory)
- Application: Counting stable singularities
- Higher Tp based on equivariant Chern-SM class theory

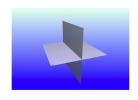
A multi-singularity is an ordered set $\underline{\eta} := (\eta_1, \cdots, \eta_r)$ of mono-sing.

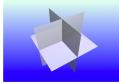
A *multi-singularity* is an ordered set $\eta := (\eta_1, \cdots, \eta_r)$ of mono-sing. e.g., In case of (m, n) = (3, 3), there are four non-mono stable types;

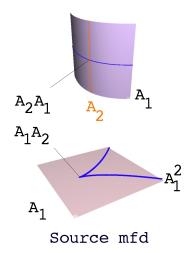
$$A_1^2 := A_1 A_1,$$

$$A_1^2 := A_1 A_1, \qquad A_1^3 := A_1 A_1 A_1, \qquad A_1 A_2, \quad A_2 A_1$$

$$A_1A_2$$
, A_2A_1







Target mfd

For $f: M \to N$, the multi-singularity loci are defined by

$$\underline{\underline{\eta}(f)} := \overline{\left\{\begin{array}{c|c} \exists x_2, \cdots, x_r \in M \ s.t. \ x_i \neq x_j, \\ f \ \text{at} \ x_i \ \text{is of type} \ \eta_i \ (2 \leq i \leq r) \end{array}\right\}}$$

$$\downarrow f$$

$$\overline{f(\underline{\eta}(f))} := \overline{\left\{\begin{array}{c|c} y \in N \mid \exists x_1, \cdots, x_r \in f^{-1}(y) \ s.t. \ x_i \neq x_j, \\ f \ \text{at} \ x_i \ \text{is of type} \ \eta_i \ (1 \leq j \leq r) \end{array}\right\}}$$

For $f: M \to N$, the multi-singularity loci are defined by

$$\underline{\underline{\eta}(f)} := \overline{\left\{ \begin{array}{c} x_1 \in \eta_1(f) \mid \exists x_2, \cdots, x_r \in M \ s.t. \ x_i \neq x_j, \\ f \ \text{at} \ x_i \ \text{is of type} \ \eta_i \ (2 \leq i \leq r) \end{array} \right\}} \\
\downarrow f \\
\underline{f(\underline{\eta}(f))} := \overline{\left\{ \begin{array}{c} y \in N \mid \exists x_1, \cdots, x_r \in f^{-1}(y) \ s.t. \ x_i \neq x_j, \\ f \ \text{at} \ x_i \ \text{is of type} \ \eta_i \ (1 \leq j \leq r) \end{array} \right\}}$$

This is a finite-to-one map: let $\deg_1 \eta$ be the degree

 $\deg_1 \underline{\eta} = \text{the number of } \eta_1 \text{ in the tuple } \underline{\eta}.$

Remark that η_2, \cdots, η_r could be unordered for the above def.

Definition 1

The **Landweber-Novikov class** for $f: M \to N$ multi-indexed by $I = i_1 i_2 \cdots$ is

$$s_I = s_I(f) = f_*(c_1(f)^{i_1}c_2(f)^{i_2}\cdots) \in H^*(N)$$

where $c_i(f) = c_i(f^*TN - TM)$.

For simplicity we often denote s_I to stand for its pullback $f^*s_I \in H^*(M)$ as well (i.e., omit the letter f^*).

```
s_0 = f_*(1),

s_1 = f_*(c_1),

s_2 = f_*(c_1^2), s_{01} = f_*(c_2),

s_3 = f_*(c_1^3), s_{11} = f_*(c_1c_2), s_{001} = f_*(c_3), \cdots
```

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^m, 0 \to \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $tp(\underline{\eta})$ in abstract Chern class c_i and abstract Landweber-Novikov class s_I with rational coefficients, so that

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^m, 0 \to \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $tp(\underline{\eta})$ in abstract Chern class c_i and abstract Landweber-Novikov class s_I with rational coefficients, so that for any stable map $f: M \to N$ of map-codim. k,

• The locus in source is expressed by the polynomial evaluated by $c_i = c_i(f) = c_i(f^*TN - TM)$ and $s_I = s_I(f) = f^*f_*(c^I(f))$: $tp(\eta)(f) = \mathrm{Dual}\left[\overline{\eta(f)}\right] \in H^*(M;\mathbb{Q})$

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^m, 0 \to \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $tp(\underline{\eta})$ in abstract Chern class c_i and abstract Landweber-Novikov class s_I with rational coefficients, so that for any stable map $f: M \to N$ of map-codim. k,

• The locus in source is expressed by the polynomial evaluated by $c_i = c_i(f) = c_i(f^*TN - TM)$ and $s_I = s_I(f) = f^*f_*(c^I(f))$:

$$tp(\underline{\eta})(f) = \text{Dual}\left[\underline{\underline{\eta}(f)}\right] \in H^*(M; \mathbb{Q})$$

ullet The locus in target is expressed by a universal polynomial in $s_I(f)$

$$tp_{{\rm \tiny target}}(\underline{\eta})(f) := \tfrac{1}{\deg_1 \eta} \, f_*tp(\underline{\eta}) = {\rm Dual} \, [\overline{f(\underline{\eta}(f))})] \ \in H^*(N;\mathbb{Q})$$

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity $\underline{\eta}$ of stable-germs $\mathbb{C}^m, 0 \to \mathbb{C}^{m+k}, 0$, there exists a unique polynomial $tp(\underline{\eta})$ in abstract Chern class c_i and abstract Landweber-Novikov class s_I with rational coefficients, so that for any stable map $f: M \to N$ of map-codim. k,

- The locus in source is expressed by the polynomial evaluated by $c_i = c_i(f) = c_i(f^*TN TM)$ and $s_I = s_I(f) = f^*f_*(c^I(f))$: $tp(\eta)(f) = \text{Dual}\left[\overline{\eta(f)}\right] \in H^*(M; \mathbb{Q})$
- ullet The locus in target is expressed by a universal polynomial in $s_I(f)$

$$tp_{{\rm \tiny target}}(\underline{\eta})(f) := \tfrac{1}{\deg_1 \eta} \, f_*tp(\underline{\eta}) = {\rm Dual} \, [\overline{f(\underline{\eta}(f))})] \ \in H^*(N;\mathbb{Q})$$

We call $tp(\underline{\eta})$ the Thom polynomial of stable multi-singularity type $\underline{\eta}$

- 4 ロ ト 4 同 ト 4 ヨ ト 4 ヨ ト り 9 ()

Example 0.2

Tp for multi-singularities of stable maps $M^n \to N^n$ up to $\operatorname{codim} 3$ are

type	codim	$\mid tp \mid$
A_1	1	c_1
A_2	2	$c_1^2 + c_2$
A_1A_1	2	$c_1 s_1 - 4c_1^2 - 2c_2$
A_3	3	$c_1^3 + 3c_1c_2 + 2c_3$
$A_1A_1A_1$	3	$\begin{array}{c} \frac{1}{2}(c_1s_1^2 - 4c_2s_1 - 4c_1s_2 - 2c_1s_{01} - 8c_1^2s_1 \\ +40c_1^3 + 56c_1c_2 + 24c_3) \end{array}$
A_1A_2	3	$c_1 s_2 + c_1 s_{01} - 6c_1^3 - 12c_1 c_2 - 6c_3$
A_2A_1	3	$c_1^2 s_1 + c_2 s_1 - 6c_1^3 - 12c_1 c_2 - 6c_3$

Remark 0.3

• Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2\infty}MU(\infty+k)$. There has not yet appeared algebro-geometric proof so far –

Remark 0.3

• Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2\infty}MU(\infty+k)$. There has not yet appeared algebro-geometric proof so far – In fact, this theorem touches deep enumerative problems in algebraic geometry, e.g.

Göttsche conj. (thm) counting nodal curves on a surface, Kontsevich's formula counting rational plane curves, ...

Remark 0.3

- Kazarian's proof relies on the topology of the classifying space of complex cobordisms $\Omega^{2\infty}MU(\infty+k)$. There has not yet appeared algebro-geometric proof so far In fact, this theorem touches deep enumerative problems in algebraic geometry, e.g. Göttsche conj. (thm) counting nodal curves on a surface, Kontsevich's formula counting rational plane curves, ...
- To compute Tp for stable multi-singularities, Rimanyi's restiction method fits very well.

Here we give an application of Tp theory.

Here we give an application of Tp theory.

Given a finitely determined map-germ $f:\mathbb{C}^m,0\to\mathbb{C}^n,0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a *stable perturbation*

$$f_t: U \to \mathbb{C}^n \ (t \in \Delta \subset \mathbb{C}, \ 0 \in U \subset \mathbb{C}^m)$$

so that f_0 is a representative of f and f_t for $t \neq 0$ is a stable map. Then the number of $\eta(f_t)$ is an invariant of the original germ f.

Here we give an application of Tp theory.

Given a finitely determined map-germ $f:\mathbb{C}^m,0\to\mathbb{C}^n,0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a *stable perturbation*

$$f_t: U \to \mathbb{C}^n \ (t \in \Delta \subset \mathbb{C}, \ 0 \in U \subset \mathbb{C}^m)$$

so that f_0 is a representative of f and f_t for $t \neq 0$ is a stable map. Then the number of $\eta(f_t)$ is an invariant of the original germ f. Ex:

```
\begin{array}{l} (m,1)\colon \sharp \ \mathsf{Morse\ sing.}\ (A_1)\Rightarrow \mathsf{Milnor\ number}\ \mu. \\ (2,2)\colon \sharp \ \mathsf{Cusp/Double\ folds}\Rightarrow \mathsf{Fukuda-Ishikawa},\ \mathsf{Gaffney-Mond}\\ m,n\leq 8\colon \sharp \ \mathsf{TB\ singularities}\Rightarrow \mathsf{Ballesteros-Fukui-Saia}\ \ldots \end{array}
```

Here we give an application of Tp theory.

Given a finitely determined map-germ $f: \mathbb{C}^m, 0 \to \mathbb{C}^n, 0$, and a stable (mono/multi-)singularity type η of codimension n in the target. Take a stable perturbation

$$f_t: U \to \mathbb{C}^n \ (t \in \Delta \subset \mathbb{C}, \ 0 \in U \subset \mathbb{C}^m)$$

so that f_0 is a representative of f and f_t for $t \neq 0$ is a stable map. Then the number of $\eta(f_t)$ is an invariant of the original germ f.

Ex:

```
(m,1): # Morse sing. (A_1) \Rightarrow Milnor number \mu.
(2,2): \sharp Cusp/Double folds \Rightarrow Fukuda-Ishikawa, Gaffney-Mond
m, n \leq 8: # TB singularities \Rightarrow Ballesteros-Fukui-Saia ...
```

USP-ICMC is the most important place about this theme!

Restrict our attention to the case of weighted homogeneous map-germs.

Restrict our attention to the case of weighted homogeneous map-germs.

Let
$$f=(f_1,\cdots,f_n):\mathbb{C}^m,0\to\mathbb{C}^n,0$$
 be w. h. germs with weights w_1,\cdots,w_m and degrees d_1,\cdots,d_n , i.e.,
$$f(\alpha^{w_1}x_1,\cdots,\alpha^{w_m}x_m)=(\alpha^{d_1}f_1(\boldsymbol{x}),\cdots,\alpha^{d_n}f_n(\boldsymbol{x})) \quad (\forall \alpha\in\mathbb{C}^*)$$

Restrict our attention to the case of weighted homogeneous map-germs.

Let
$$f=(f_1,\cdots,f_n):\mathbb{C}^m,0\to\mathbb{C}^n,0$$
 be w. h. germs with weights w_1,\cdots,w_m and degrees d_1,\cdots,d_n , i.e.,
$$f(\alpha^{w_1}x_1,\cdots,\alpha^{w_m}x_m)=(\alpha^{d_1}f_1(\boldsymbol{x}),\cdots,\alpha^{d_n}f_n(\boldsymbol{x})) \quad (\forall \alpha\in\mathbb{C}^*)$$

Suppose f is finitely determined

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in the target.

Take a stable unfolding F of f: Suppose that unfolding parameters have weights r_1, \dots, r_k .

$$\begin{array}{cccc} \mathbb{C}^m & \stackrel{f}{\longrightarrow} & \mathbb{C}^n \\ & i_0 \downarrow & & \downarrow \iota_0 \\ & \underline{\eta}(F) \subset & \mathbb{C}^{m+k} & \stackrel{F}{\longrightarrow} & \mathbb{C}^{n+k} & \supset F(\underline{\eta}(F)) \end{array}$$

Take a stable unfolding F of f: Suppose that unfolding parameters have weights r_1, \dots, r_k .

$$\begin{array}{cccc} \mathbb{C}^m & \xrightarrow{f} & \mathbb{C}^n \\ & i_0 \downarrow & & \downarrow \iota_0 \\ & \underline{\eta}(F) \subset & \mathbb{C}^{m+k} & \xrightarrow{F} & \mathbb{C}^{n+k} & \supset F(\underline{\eta}(F)) \end{array}$$

Take a generic (non-equivariant) section ι_t close to ι_0 so that ι_t is transverse to the critical value set of F, then it induces a stable perturbation f_t of the original map $f_0=f$.

Take the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^N}(1)$ over \mathbb{P}^N $(N\gg 0)$ and define

$$\bigoplus_{i=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}(w_{i}) =: E_{0} \xrightarrow{f_{0}} E_{1} := \bigoplus_{j=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}(d_{j})$$

$$\downarrow \iota_{0} \qquad \qquad \downarrow \iota_{0}$$

$$\underline{\eta}(F) \subset E_{0} \oplus E' \xrightarrow{F} E_{1} \oplus E' \supset F(\underline{\eta}(F))$$

where $E' = \bigoplus_{i=1}^k \mathcal{O}_{\mathbb{P}^N}(r_i)$ corresponding to unfolding parameters.

Take the canonical line bundle $\ell=\mathcal{O}_{\mathbb{P}^N}(1)$ over \mathbb{P}^N $(N\gg 0)$ and define

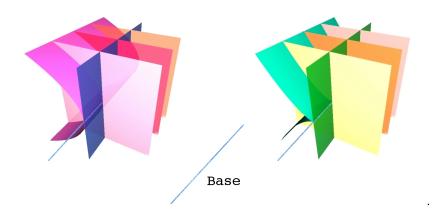
$$\bigoplus_{i=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}(w_{i}) =: E_{0} \xrightarrow{f_{0}} E_{1} := \bigoplus_{j=1}^{m} \mathcal{O}_{\mathbb{P}^{N}}(d_{j})$$

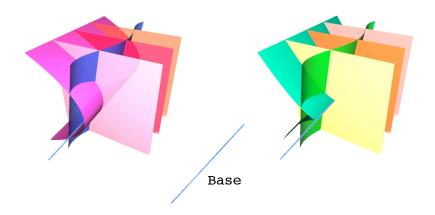
$$\downarrow \iota_{t} \qquad \qquad \downarrow \iota_{t}$$

$$\underline{\eta}(F) \subset E_{0} \oplus E' \xrightarrow{F} E_{1} \oplus E' \supset F(\underline{\eta}(F))$$

where $E'=\oplus_{i=1}^k \mathcal{O}_{\mathbb{P}^N}(r_i)$ corresponding to unfolding parameters.

Perturb the embedding ι_0 to yield a (non-equivariant) stable perturbation $f_t:E_0\to E_1$ of the original map $f_0=f_\eta.$





Put $a=c_1(\ell)$. In the total space $H^*(E_1\oplus E';\mathbb{Q})\stackrel{p^*}{\simeq} H^*(\mathbb{P}^\infty;\mathbb{Q})=\mathbb{Q}[a]$,

Put $a=c_1(\ell)$. In the total space $H^*(E_1\oplus E';\mathbb{Q})\overset{p^*}{\simeq} H^*(\mathbb{P}^\infty;\mathbb{Q})=\mathbb{Q}[a]$,

$$[\overline{F(\underline{\eta}(F))}] = tp_{\mathrm{target}}(\underline{\eta})(F) = {}^{\exists}h \cdot a^n,$$

$$[E_1] = c_{top}(p^*E') = r_1 \cdots r_k \cdot a^k.$$

Put $a=c_1(\ell)$. In the total space $H^*(E_1\oplus E';\mathbb{Q})\overset{p^*}{\simeq} H^*(\mathbb{P}^\infty;\mathbb{Q})=\mathbb{Q}[a]$, $\overline{[F(\underline{\eta}(F))]}=tp_{\mathsf{target}}(\underline{\eta})(F)=\exists h\cdot a^n,$ $[E_1]=c_{top}(p^*E')=r_1\cdots r_k\cdot a^k.$

$$\sharp \underline{\eta}(f_t) = \frac{tp_{\mathsf{target}}(\underline{\eta}) \cdot [E_1]}{c_{top}(E_1 \oplus E')} = \frac{h \cdot r_1 \cdots r_k}{d_1 \cdots d_n \cdot r_1 \cdots r_k} = \frac{h}{d_1 \cdots d_n}$$

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in target. Then, the 0-stable invariant of a finitely determined w. h. germ $\mathbb{C}^m, 0 \to \mathbb{C}^n, 0$ is computed by

$$\sharp \underline{\eta}(f_t) = \frac{f_* t p(\underline{\eta})(f_0)}{\deg_1 \underline{\eta} \cdot d_1 \cdots d_n} = \frac{t p(\underline{\eta})(f_0)}{\deg_1 \underline{\eta} \cdot w_1 \cdots w_m}$$

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity $\underline{\eta}$ of codimension n in target. Then, the 0-stable invariant of a finitely determined w. h. germ $\mathbb{C}^m, 0 \to \mathbb{C}^n, 0$ is computed by

$$\sharp \underline{\eta}(f_t) = \frac{f_* t p(\underline{\eta})(f_0)}{\deg_1 \underline{\eta} \cdot d_1 \cdots d_n} = \frac{t p(\underline{\eta})(f_0)}{\deg_1 \underline{\eta} \cdot w_1 \cdots w_m}$$

For our universal map f_0 and stable map F $c(F) = c(f_0) = 1 + c_1(f_0) + c_2(f_0) + \cdots = \frac{\prod (1+d_j)}{\prod (1+w_i)}$ and $s_0(f_0) = \frac{d_1 \cdots d_n}{w_1 \cdots w_m}$ and $s_I(f_0) = c^I(f_0)s_0(f_0)$.

Thus the polynomial $tp(\underline{\eta})$ in $c_i=c_i(f_0)$ and $s_I=s_I(f_0)$ is written in terms of w_i and d_j .

(m,n)=(2,2): Tp of stable singularities of $\operatorname{codim} 2$ are

$$tp(A_2) = c_1^2 + c_2, \quad tp(A_1^2) = c_1 s_1 - 4c_1^2 - 2c_2.$$

(m,n)=(2,2): Tp of stable singularities of $\operatorname{codim} 2$ are

$$tp(A_2) = c_1^2 + c_2, \quad tp(A_1^2) = c_1 s_1 - 4c_1^2 - 2c_2.$$

(m,n)=(2,2): Tp of stable singularities of $\operatorname{codim} 2$ are

$$tp(A_2) = c_1^2 + c_2, \quad tp(A_1^2) = c_1 s_1 - 4c_1^2 - 2c_2.$$

```
\begin{split} \log |T| &= \text{AC := Simplify[Expand[w1^{-1} w2^{-1} (c1^{2} + c2)]]; AC} \\ \log |T| &= \left\{ \frac{d1^{2} + d2^{2} + 2 w1^{2} + 3 d1 (d2 - w1 - w2) + 3 w1 w2 + 2 w2^{2} - 3 d2 (w1 + w2)}{w1 w2} \right\} \\ \text{A := Simplify[Expand[1 / 2 d1^{-1} d2^{-1} ((dc1)^{2} - 4 dc1^{2} - 2 dc2)]]; A} \\ &= \left\{ \frac{1}{2 w1^{2} w2^{2}} \left( d1^{3} d2 - 2 w1 w2 \left( 2 d2^{2} + 3 w1^{2} + 5 w1 w2 + 3 w2^{2} - 5 d2 (w1 + w2) \right) + 2 d1^{2} \left( d2^{2} - 2 w1 w2 - d2 (w1 + w2) \right) + d1 \left( d2^{3} - 2 d2^{2} (w1 + w2) + 10 w1 w2 (w1 + w2) + d2 \left( w1^{2} - 8 w1 w2 + w2^{2} \right) \right) \right\} \end{split}
```

This coincides with Gaffney-Mond's computation (1991).

(m,n)=(2,3): Tp of stable singularities of $\operatorname{codim} 2$ in source are $tp(A_1)=c_2, \quad tp(A_1^3)=\frac{1}{2}(s_0^2-s_1-2c_1s_0+2c_1^2+2c_2).$

(m,n)=(2,3): Tp of stable singularities of $\operatorname{codim} 2$ in source are

$$tp(A_1) = c_2$$
, $tp(A_1^3) = \frac{1}{2}(s_0^2 - s_1 - 2c_1s_0 + 2c_1^2 + 2c_2)$.

TpA1 := Simplify[Expand[w1^{-1} w2^{-1} c2]]; TPA1

$$\bigg\{\frac{-\,d3\;w1+w1^2+d2\;\left(d3-w1-w2\right)\,+d1\;\left(d2+d3-w1-w2\right)\,-d3\;w2+w1\,w2+w2^2}{w1\,w2}\bigg\}$$

TpA111 := Simplify[

Expand
$$[1/6 d1^{-1} d2^{-1} d3^{-1} (d^3-3 d (d c1) + 2 d (c1)^2 + 2 d c2)]];$$
 TpA111

$$\left\{ \begin{array}{l} \frac{1}{6\;w1^3\;w2^3}\;\left(d1^2\;\left(d2^2\;d3^2-3\;d2\;d3\;w1\;w2+2\;w1^2\;w2^2\right)\right. \\ \left. 2\;w1^2\;w2^2\;\left(d2^2+d3^2+2\;w1^2+3\;d2\;\left(d3-w1-w2\right)\right. \\ \left. +\;3\;w1\;w2+2\;w2^2-3\;d3\;\left(w1+w2\right)\right) \right. \\ \left. -\;2\;w1^2\;w2^2\;\left(d2^2+d3^2+2\;w1^2+3\;d2\;\left(d3-w1-w2\right)\right. \\ \left. +\;3\;w1\;w2+2\;w2^2-3\;d3\;\left(w1+w2\right)\right) \right. \\ \left. -\;2\;w1^2\;w2^2\;\left(d2^2+d3^2+2\;w1^2+3\;d2\;\left(d3-w1-w2\right)\right. \\ \left. +\;3\;w1\;w2+2\;w2^2-3\;d3\;\left(w1+w2\right)\right) \right. \\ \left. -\;2\;w1^2\;w2^2+2\;w1^2+3\;d2\;\left(d3-w1-w2\right)\right. \\ \left. -\;2\;w1^2\;w2^2+2\;w2^2+3\;d3\;\left(w1+w2\right)\right) \right. \\ \left. -\;2\;w1^2\;w2^2+2\;w1^2+3\;d2\;\left(d3-w1-w2\right)\right. \\ \left. -\;2\;w1^2\;w2^2+2\;w1^2+3\;w1$$

$$3\ d1\ w1\ w2\ \left(d2^{2}\ d3+2\ w1\ w2\ \left(-d3+w1+w2\right)\right.\\ \left.+\ d2\ \left(d3^{2}-2\ w1\ w2-d3\ \left(w1+w2\right)\right)\right)\right)\right\}$$

(m,n)=(2,3): Tp of stable singularities of $\operatorname{codim} 2$ in source are

$$tp(A_1) = c_2$$
, $tp(A_1^3) = \frac{1}{2}(s_0^2 - s_1 - 2c_1s_0 + 2c_1^2 + 2c_2)$.

TpA1 := Simplify[Expand[w1^{-1} w2^{-1} c2]]; TPA1

$$\left\{ \begin{array}{l} - \text{d3 w1} + \text{w1}^2 + \text{d2 } (\text{d3} - \text{w1} - \text{w2}) + \text{d1 } (\text{d2} + \text{d3} - \text{w1} - \text{w2}) - \text{d3 w2} + \text{w1 w2} + \text{w2}^2 \\ \hline \text{w1 w2} \end{array} \right\}$$

$$\textbf{TpAll1} := \textbf{Simplify[} \\ \textbf{Expand[1 / 6 d1^{-1} d2^{-1} d3^{-1} (d^3 - 3 d (d c1) + 2 d (c1)^2 + 2 d c2)]]; TpAll1}$$

$$\left\{ \begin{array}{l} \frac{1}{6\;w{1}^{3}\;w{2}^{3}}\;\left(d{1}^{2}\;\left(d{2}^{2}\;d{3}^{2}-3\;d{2}\;d{3}\;w{1}\;w{2}+2\;w{1}^{2}\;w{2}^{2}\right)\right.\right.\\ \left.\left.2\;w{1}^{2}\;w{2}^{2}\;\left(d{2}^{2}+d{3}^{2}+2\;w{1}^{2}+3\;d{2}\;\left(d{3}-w{1}-w{2}\right)\right.\\ \left.\left.3\;d{1}\;w{1}\;w{2}\;\left(d{2}^{2}\;d{3}+2\;w{1}\;w{2}\;\left(-d{3}+w{1}+w{2}\right)\right.\right.\right)\left.\left.d{3}\right.\right.\right\}\right.\\ \left.\left.d{3}\;d{1}\;w{1}\;w{2}\;\left(d{2}^{2}\;d{3}+2\;w{1}\;w{2}\;\left(-d{3}+w{1}+w{2}\right)\right.\right.\right)\left.d{3}\right.\right]$$

This coincides with Mond's computation (1991).

$$\begin{array}{l} (m,n) = (3,3) \colon \operatorname{Tp} \ \operatorname{for} \ A_3 = c_1^3 + 3c_1c_2 + 2c_3 \\ & \operatorname{tpA3} := \operatorname{c1^3} + 3\operatorname{c1}\operatorname{c2} + 2\operatorname{c3}; \\ & \operatorname{tpA3} / \{\operatorname{w1}\operatorname{w2}\operatorname{w3}\} \ / \ \{\operatorname{c1} \to \operatorname{a1}, \ \operatorname{c2} \to \operatorname{a2}, \ \operatorname{c3} \to \operatorname{a3}\} \\ & \operatorname{Out}[37] = \left\{ \frac{1}{\operatorname{w1}\operatorname{w2}\operatorname{w3}} \left((\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1} - \operatorname{w2} - \operatorname{w3})^3 + \right. \\ & 3 \ (\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1} - \operatorname{w2} - \operatorname{w3}) \ (\operatorname{d1}\operatorname{d2} + (\operatorname{d1} + \operatorname{d2}) \ \operatorname{d3} - (\operatorname{d1} + \operatorname{d2} + \operatorname{d3}) \ \operatorname{w1} + \\ & \operatorname{w1^2} - (\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1}) \ \operatorname{w2} + \operatorname{w2^2} - (\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1} - \operatorname{w2}) \ \operatorname{w3} + \operatorname{w3^2} \right) + \\ & 2 \ (\operatorname{d1}\operatorname{d2}\operatorname{d3} - (\operatorname{d2}\operatorname{d3} + \operatorname{d1} \ (\operatorname{d2} + \operatorname{d3})) \ \operatorname{w1} + (\operatorname{d1} + \operatorname{d2} + \operatorname{d3}) \ \operatorname{w1^2} - \operatorname{w1^3} - \\ & \left. \left(\operatorname{d1}\operatorname{d2} + (\operatorname{d1} + \operatorname{d2}) \ \operatorname{d3} - (\operatorname{d1} + \operatorname{d2} + \operatorname{d3}) \ \operatorname{w1} + \operatorname{w1^2} \right) \ \operatorname{w2} + (\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1}) \ \operatorname{w2^2} - \operatorname{w2^3} - \\ & \left. \left(\operatorname{d1}\operatorname{d2} + (\operatorname{d1} + \operatorname{d2}) \ \operatorname{d3} - (\operatorname{d1} + \operatorname{d2} + \operatorname{d3}) \ \operatorname{w1} + \operatorname{w1^2} \right) \ \left(\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1} \right) \ \operatorname{w2^2} - \operatorname{w2^3} - \\ & \left. \left(\operatorname{d1} + \operatorname{d2} + \operatorname{d3} - \operatorname{w1} - \operatorname{w2} \right) \ \operatorname{w3^2} - \operatorname{w3^3} \right) \right) \right\} \\ & \operatorname{ln[38]} = \mathbf{Factor}[\mathbf{Simplify}[\mathbf{\$} / \cdot \{ \mathbf{d1} \to \mathbf{w1}, \ \mathbf{d2} \to \mathbf{w2}, \ \mathbf{d3} \to \mathbf{d}, \ \mathbf{w3} \to \mathbf{w0} \}] \] \ / / \mathbf{Simplify} \\ & \operatorname{Out[38]} = \left\{ \frac{\left(\operatorname{d} - \operatorname{3}\operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{2}\operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{w0} \right)}{\operatorname{w0} \ \operatorname{w1} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\left(\operatorname{d} - \operatorname{3}\operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{2}\operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{w0} \right)}{\operatorname{w0} \ \operatorname{w1} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\left(\operatorname{d} - \operatorname{3}\operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{w0} \right) \ \left(\operatorname{d} - \operatorname{w0} \right)}{\operatorname{w0} \ \operatorname{w1} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\left(\operatorname{d} - \operatorname{w1} \right) \ \left(\operatorname{d} - \operatorname{w1} \right)}{\operatorname{w0} \ \operatorname{w1} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\left(\operatorname{d} - \operatorname{w1} \right) \ \left(\operatorname{d} - \operatorname{w1} \right)}{\operatorname{w0} \ \operatorname{w1}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\operatorname{deg}[\mathbf{w}] \ \left(\operatorname{d} - \operatorname{w1} \right) \ \left(\operatorname{w1} - \operatorname{w1} \right)}{\operatorname{w1} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\operatorname{deg}[\mathbf{w}] \ \left(\operatorname{d} - \operatorname{w1} - \operatorname{w1} \right)}{\operatorname{w2} \operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\operatorname{deg}[\mathbf{w}] \ \left(\operatorname{d} - \operatorname{w1} - \operatorname{w1} \right)}{\operatorname{w2}} \right\} \right\} \\ & \operatorname{deg}[\mathbf{w}] = \left\{ \frac{\operatorname{d$$

Our formula is valid for any corank.

In case of corank one it coincides with Marar-Montaldi-Ruas.

$$(m,n) = (3,3) \colon \mathsf{Tp} \; \mathsf{for} \; A_1^3 \\ \text{Install := Simplify}[\\ 1/6 \; (40 \, \mathrm{cl}^3 + 56 \, \mathrm{cl} \, \mathrm{c2} + 24 \, \mathrm{c3} - 2 \, \mathrm{cl} \, \mathrm{sol} - 8 \, \mathrm{cl}^2 \, \mathrm{sl} - 4 \, \mathrm{c2} \, \mathrm{sl} + \mathrm{cl} \, \mathrm{sl}^2 - 4 \, \mathrm{cl} \, \mathrm{s2}) \; (\mathrm{wl} \, \mathrm{w2} \, \mathrm{w3}) \, ^{-} \{-1\} \; / . \\ \; \{\mathrm{cl} \to \mathrm{al}, \; \mathrm{c2} \to \mathrm{a2}, \; \mathrm{c3} \to \mathrm{a3}, \; \mathrm{so} \to \mathrm{sa0}, \; \mathrm{sl} \to \mathrm{sa1}, \; \mathrm{sol} \to \mathrm{sa01}, \\ \; \mathrm{s2} \to \mathrm{sa2}, \; \mathrm{s3} \to \mathrm{sa3}, \; \mathrm{sl1} \to \mathrm{sal1}, \; \mathrm{sol} \to \mathrm{sa001} \}]; \; \mathrm{AlAlAl} \\ \mathsf{Out}[40] = \left\{ \left\{ \frac{1}{6 \, \mathrm{wl} \, \mathrm{w2} \, \mathrm{w3}} \left(40 \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; (\mathrm{d1} + \mathrm{d2} + \mathrm{d3} - \mathrm{wl} - \mathrm{w2} - \mathrm{w3}) \, ^3 + \frac{12 \, \mathrm{d1} \, \mathrm{d2} \, \mathrm{d3} \; \mathrm{d3} \; \mathrm{d3} + \frac{12 \, \mathrm{d3} \, \mathrm{d3} \; \mathrm{d3} \; \mathrm{d3} + \frac{12 \, \mathrm{d3}$$

$$(m,n) = (3,3)$$
: Tp for A_1A_2

```
In[42]:= A1A2 := Simplify[
                                                           (s2 c1 + s01 c1 - 6 c1^3 - 12 c1 c2 - 6 c3) (w1 w2 w3)^{-1} /.
                                                                 \{c1 \rightarrow a1, c2 \rightarrow a2, c3 \rightarrow a3, s0 \rightarrow sa0, s1 \rightarrow sa1, s01 \rightarrow sa01,
                                                                        s2 \rightarrow sa2, s3 \rightarrow sa3, s11 \rightarrow sa11, s001 \rightarrow sa001}]; A1A2
\text{Out}[42] = \\ \left\{ \left\{ \frac{1}{w1 \ w2 \ w3} \left[ -6 \ \left( d1 + d2 + d3 - w1 - w2 - w3 \right)^{3} + \frac{d1 \ d2 \ d3 \ \left( d1 + d2 + d3 - w1 - w2 - w3 \right)^{3}}{w1 \ w2 \ w3} \right. \right. \right. \right. \\ \left. \left( \frac{1}{w1 \ w2 \ w3} \left[ -\frac{1}{w1 \ w2 \ w3} \left[ -\frac{1
                                                                       12 (d1 + d2 + d3 - w1 - w2 - w3) (d1 d2 + (d1 + d2) d3 - (d1 + d2 + d3) w1 + w1^2 - d3)
                                                                                                (d1 + d2 + d3 - w1) w2 + w2^{2} - (d1 + d2 + d3 - w1 - w2) w3 + w3^{2}) + \frac{1}{w1 w2 w3}
                                                                       d1\ d2\ d3\ (d1+d2+d3-w1-w2-w3)\ \left(d1\ d2+(d1+d2)\ d3-(d1+d2+d3)\ w1+d3-(d1+d2+d3)\right)
                                                                                               w1^2 - (d1 + d2 + d3 - w1) w2 + w2^2 - (d1 + d2 + d3 - w1 - w2) w3 + w3^2
                                                                        6 (d1 d2 d3 - (d2 d3 + d1 (d2 + d3)) w1 + (d1 + d2 + d3) w1^2 - w1^3 -
                                                                                                     (d1 d2 + (d1 + d2) d3 - (d1 + d2 + d3) w1 + w1^{2}) w2 + (d1 + d2 + d3 - w1) w2^{2} - w2^{3} - w2^{3} + w2^{2} + w2^{3} + w2^{3} + w2^{2} + w2^{2
                                                                                                   (d1 d2 + (d1 + d2) d3 - (d1 + d2 + d3) w1 + w1^2 - (d1 + d2 + d3 - w1) w2 + w2^2) w3 +
                                                                                                (d1 + d2 + d3 - w1 - w2) w3^{2} - w3^{3})
       |_{0|43|=} Factor[Simplify[Simplify[% /. {d1 \rightarrow w1, d2 \rightarrow w2, d3 \rightarrow d, w3 \rightarrow w0}]]] // Simplify
```

$$\mbox{Out[43]= } \left. \left\{ \left\{ \frac{ (\mbox{\it d} - 4 \mbox{\it w0}\,) \ \, (\mbox{\it d} - 3 \mbox{\it w0}\,) \ \, (\mbox{\it d} - 2 \mbox{\it w0}\,) \ \, (\mbox{\it d} - \mbox{\it w0}\,) }{\mbox{\it w0}^2 \mbox{\it w1} \mbox{\it w2}} \right\} \right\} \label{eq:out[43]= } \right\} \right\}$$

Let us switch to the next theme: "Higher Tp"

Let us switch to the next theme: "Higher Tp"

Motivation:

For Morin maps $f:M\to N$, i.e. stable maps having only A_k -singularities, the closure $S_k:=\overline{A_k(f)}\overset{\iota}{\hookrightarrow} M$ is a closed submanifold, then

$$\iota_* c(TS_k) = \iota_* (1 + c_1(TS_k) + \cdots) \in H^*(M)$$

is sometimes thought as "higher Thom polynomials" (Y. Ando, H. Levine, I. Porteous). Its leading term is nothing but $\iota_*(1) = \mathrm{Dual}\,[S_k] = tp(A_k)$.

Problem

• In general (for non-Morin maps) the closure S_k is not smooth, so $c(TS_k)$ does not make sense.

Problem

- In general (for non-Morin maps) the closure S_k is not smooth, so $c(TS_k)$ does not make sense.
- The pushforward $\iota_* \, c(TS_k) \in H^*(M)$ is not a polynomial in the difference Chern class $c_i(f) = c_i(f^*TN TM)$ (Here f is a Morin map).

Problem

- In general (for non-Morin maps) the closure S_k is not smooth, so $c(TS_k)$ does not make sense.
- The pushforward $\iota_* \, c(TS_k) \in H^*(M)$ is not a polynomial in the difference Chern class $c_i(f) = c_i(f^*TN TM)$ (Here f is a Morin map).

Solution

We employ Chern class for singular varieties to develop a theory.

Problem

- In general (for non-Morin maps) the closure S_k is not smooth, so $c(TS_k)$ does not make sense.
- The pushforward $\iota_* \, c(TS_k) \in H^*(M)$ is not a polynomial in the difference Chern class $c_i(f) = c_i(f^*TN TM)$ (Here f is a Morin map).

Solution

- We employ Chern class for singular varieties to develop a theory.
- A genuine generalization of Tp must be for the Segre class, the Chern class of normal bundle $c(\nu)$ $(\nu=TM-TS_k)$ if S_k is smooth, not of tangent bundle.

Let X be a (singular) complex algebraic variety.

Let X be a (singular) complex algebraic variety.

 $\mathcal{F}(X)$: the abelian group of <u>constructible functions</u> over X,

$$\alpha: X \to \mathbb{Z}, \quad \alpha = \sum_{\text{finite}} a_i 1\!\!1_{W_i} \quad (a_i \in \mathbb{Z} \text{ and } W_i: \text{ subvarieties})$$

For proper morphisms $f:X\to Y$, we define $f_*:\mathcal{F}(X)\to\mathcal{F}(Y)$:

$$f_* 1_W(y) := \int_{f^{-1}(y)} 1_W := \chi(W \cap f^{-1}(y)) \qquad (y \in Y)$$

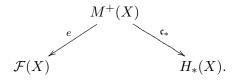
For proper $f: X \to Y$, $g: Y \to Z$, it holds that $(g \circ f)_* = g_* \circ f_*$.

 $\mathcal{F}: \mathcal{V}ar \to \mathcal{A}b: covariant functor$

 $M^+(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R} -equiv.) of morphisms $[\rho:M\to X]$ of manifolds M to X.

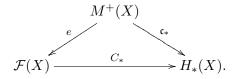
 $M^+(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R} -equiv.) of morphisms $[\rho:M\to X]$ of manifolds M to X.

 $\text{Define} \quad e[\rho:M\to X]:=\rho_*1\!\!1_M,\ \mathfrak{c}_*[\rho:M\to X]:=\rho_*(c(TM)\frown [M])$



 $M^+(X)$: the group completion of the monoid generated by the isomorphism classes (\mathcal{R} -equiv.) of morphisms $[\rho:M\to X]$ of manifolds M to X.

 $\text{Define} \quad e[\rho:M\to X]:=\rho_*1\!\!1_M,\ \mathfrak{c}_*[\rho:M\to X]:=\rho_*(c(TM)\frown [M])$



Theorem 0.5 (MacPherson (1974))

 $C_* := \mathfrak{c}_* \circ e^{-1} : \mathcal{F}(X) \to H_*(X)$ is well-defined.

Definition 2

 $C_*(X) := C_*(1\!\!1_X)$ is called the Chern-Schwartz-MacPherson class (CSM class) of X.

- M. Schwartz (1965): relative Chern class for radial vector frames
- R. MacPherson (1974): local Euler obst. + Chern-Mather
- -J-P. Brasselet (1981): $c^{Sch}(X) = C_*(1_X)$.

Remark 0.6

• Naturality: $f_*C_*(\alpha) = C_*(f_*(\alpha))$ for proper $f: X \to Y$

Remark 0.6

- Naturality: $f_*C_*(\alpha) = C_*(f_*(\alpha))$ for proper $f: X \to Y$
- Normalization: $C_*(1_X) = c(TX) \frown [X]$ if X is non-singular.

Remark 0.6

- Naturality: $f_*C_*(\alpha) = C_*(f_*(\alpha))$ for proper $f: X \to Y$
- Normalization: $C_*(1_X) = c(TX) \frown [X]$ if X is non-singular.
- ullet Degree: For compact X, the pushforward of pt:X o pt is

$$pt_*C_*(1_W) = \chi(W) = \int_X 1_W.$$

In particular, $C_*(X) = \chi(X)[pt] + \cdots + [X] \in H_*(X)$

Remark 0.6

- Naturality: $f_*C_*(\alpha) = C_*(f_*(\alpha))$ for proper $f: X \to Y$
- Normalization: $C_*(1_X) = c(TX) \frown [X]$ if X is non-singular.
- ullet Degree: For compact X, the pushforward of pt:X o pt is

$$pt_*C_*(1_W) = \chi(W) = \int_X 1_W.$$

In particular, $C_*(X) = \chi(X)[pt] + \cdots + [X] \in H_*(X)$

Exclusion-Inclusion property = Additivity:

$$C_*(\mathbb{1}_{A \cup B}) = C_*(\mathbb{1}_A) + C_*(\mathbb{1}_B) - C_*(\mathbb{1}_{A \cap B})$$

Apply C_* to a manifold: $C_*: \mathcal{F}(M) \to H^*(M)$ (omit Dual)

Apply C_* to a manifold: $C_*: \mathcal{F}(M) \to H^*(M)$ (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$C_*(\mathbb{1}_W) = \iota_*(c(TW)) = \iota_*(c(\iota^*TM - \nu)) = c(TM) \cdot \iota_*c(-\nu)$$

Apply C_* to a manifold: $C_*: \mathcal{F}(M) \to H^*(M)$ (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$C_*(\mathbb{1}_W) = \iota_*(c(TW)) = \iota_*(c(\iota^*TM - \nu)) = c(TM) \cdot \iota_*c(-\nu)$$

• inverse normal Chern classes behaves well for transverse sections: If f is transverse to W, the fiber square gives $f^*\iota_*c(-\nu_W)=\iota_*'c(-\nu_{W'}')$

Apply C_* to a manifold: $C_*: \mathcal{F}(M) \to H^*(M)$ (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold $W \stackrel{\iota}{\hookrightarrow} M$, let ν be the normal bundle,

$$C_*(1_W) = \iota_*(c(TW)) = \iota_*(c(\iota^*TM - \nu)) = c(TM) \cdot \iota_*c(-\nu)$$

• inverse normal Chern classes behaves well for transverse sections: If f is transverse to W, the fiber square gives $f^*\iota_*c(-\nu_W)=\iota_*'c(-\nu_{W'}')$

$$W' \longrightarrow W$$

$$\downarrow^{\iota'} \qquad \qquad \downarrow^{\iota}$$

$$M' \stackrel{f}{\longrightarrow} M$$

• If W is singular, $c(-\nu)$ is not defined.

Then we define

Definition 3

The **Segre-SM class** for the embedding $\iota:W\hookrightarrow M$ is defined to be

$$C_*(1_W) = c(TM) \cdot s^{SM}(W, M) \in H^*(M).$$

Also for $\alpha \in \mathcal{F}(M)$, $s^{SM}(\alpha, M)$ is defined.

- If W is smooth, $s^{SM}(W,M) = \iota_* c(-\nu)$.
- The Segre-SM class behaves well for transverse sections.

Given a K-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \to \mathbb{Z}$. For generic maps $f: M \to N$ of map-codim. k, we put a constr. ft

 $\alpha(f): M \to \mathbb{Z}, \quad x \in M \mapsto \text{the value } \alpha \text{ of the germ } f \text{ at } x.$

Given a K-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \to \mathbb{Z}$. For generic maps $f: M \to N$ of map-codim. k, we put a constr. ft

$$\alpha(f): M \to \mathbb{Z}, \quad x \in M \mapsto \text{the value } \alpha \text{ of the germ } f \text{ at } x.$$

We then define **Higher Tp** by the following thm:

Theorem 0.7 (Ohm)

There exists a universal power series $tp^{SM}(\alpha) \in \mathbb{Z}[[c_1, c_2, \cdots]]$ so that

Given a K-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \to \mathbb{Z}$. For generic maps $f: M \to N$ of map-codim. k, we put a constr. ft

$$\alpha(f): M \to \mathbb{Z}, \quad x \in M \mapsto \text{the value } \alpha \text{ of the germ } f \text{ at } x.$$

We then define **Higher Tp** by the following thm:

Theorem 0.7 (Ohm)

There exists a universal power series $tp^{SM}(\alpha) \in \mathbb{Z}[[c_1, c_2, \cdots]]$ so that for any generic maps $f: M \to N$, the series evaluated by $c_i = c_i(f)$ expresses the Segre-SM class $s^{SM}(\alpha(f), M)$, i.e.,

$$C_*(\alpha(f)) = c(TM) \cdot tp^{SM}(\alpha)(f) \in H^*(M)$$

Given a K-invariant constructible function $\alpha: \mathcal{O}(m, m+k) \to \mathbb{Z}$. For generic maps $f: M \to N$ of map-codim. k, we put a constr. ft

$$\alpha(f): M \to \mathbb{Z}, \quad x \in M \mapsto \text{the value } \alpha \text{ of the germ } f \text{ at } x.$$

We then define **Higher Tp** by the following thm:

Theorem 0.7 (Ohm)

There exists a universal power series $tp^{SM}(\alpha) \in \mathbb{Z}[[c_1, c_2, \cdots]]$ so that for any generic maps $f: M \to N$, the series evaluated by $c_i = c_i(f)$ expresses the Segre-SM class $s^{SM}(\alpha(f), M)$, i.e.,

$$C_*(\alpha(f)) = c(TM) \cdot tp^{SM}(\alpha)(f) \in H^*(M)$$

Put $tp^{SM}(\overline{\eta}):=tp^{SM}(11_{\overline{\eta}})$ for $\alpha=11_{\overline{\eta}}$ supported on the orbit closure.

Remark 0.8

• Since $s^{SM}(W, M) = c(TM)^{-1} \cdot C_*(\mathbb{1}_W) = \text{Dual}[W] + h.o.t$, the leading term of the series is nothing but the Thom polynomial:

$$tp^{SM}(\overline{\eta}) = tp(\eta) + h.o.t$$

• For generic maps $f:M\to N$, the Euler characteristic of the singular locus of type η is universally expressed by

$$\chi(\overline{\eta(f)}) = \int_{M} c(TM) \cdot tp^{SM}(\overline{\eta})(f).$$

Remark 0.9

• To compute low dimensional terms of the universal power series $tp^{SM}(\overline{\eta})$, Rimanyi's method is very effective.

Remark 0.9

- To compute low dimensional terms of the universal power series $tp^{SM}(\overline{\eta})$, Rimanyi's method is very effective.
- For singular varieties several kinds of Chern classes are available: CSM class $C_*(X)$, Chern-Mather class $c^M(X) = C_*(Eu_X)$, Fulton's Chern class and Fulton-Johnson class.
 - So Higher TP depends on your choice.

The following is a very special case: we have a closed formula:

The following is a very special case: we have a closed formula:

Theorem 0.10 (Ohm)

Let $\ell=m-n\geq 0$. Let $\mu:\mathcal{O}(m,n)\to\mathbb{Z}$ be the Milnor number function, which assigns to any ICIS germ its Milnor number, 0 otherwise. Then, for a stable map $f:M\to N$, the Segre-SM class $s^{SM}(\mu(f),M)=c(TM)^{-1}C_*(\mu(f))$ is universally expressed by

$$tp^{SM}(\mu) = (-1)^{\ell+1}(1+c_1+c_2+\cdots)(\bar{c}_{\ell+1}+\bar{c}_{\ell+2}+\cdots)$$

where $c_i = c_i(f) = c_i(f^*TN - TM)$, $\bar{c}_i = \bar{c}_i(f) = c_i(TM - f^*TN)$.

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Let $\eta:\mathbb{C}^m,0\to\mathbb{C}^n,0$ be a weighted homogeneous ICIS, and take a universal map $f_\eta:E_0\to E_1$ associated to its weights and degrees. Then, the Milnor number of ICIS η is expressed by

$$\mu_{\eta} = \int_{E_0} \frac{C_*(\mu(f_{\eta}))}{c_{top}(E_0)} = (-1)^{m-n} \left(\frac{c_n(E_1)}{c_m(E_0)} c_{m-n}(E_0 - E_1) - 1 \right)$$

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Let $\eta: \mathbb{C}^m, 0 \to \mathbb{C}^n, 0$ be a weighted homogeneous ICIS, and take a universal map $f_n: E_0 \to E_1$ associated to its weights and degrees. Then, the Milnor number of ICIS η is expressed by

$$\mu_{\eta} = \int_{E_0} \frac{C_*(\mu(f_{\eta}))}{c_{top}(E_0)} = (-1)^{m-n} \left(\frac{c_n(E_1)}{c_m(E_0)} c_{m-n}(E_0 - E_1) - 1 \right)$$

Example 0.12

In case of n=1, i.e., η is a w. h. isolated hypersurface singularity:

$$\mu_{\eta} = (-1)^{m} \frac{c_{m}(E_{0} - E_{1})}{c_{m}(E_{0})} = \frac{top. \ (-1)^{m} \prod (1 + (w_{i} - d)t)}{top. \ \prod (1 + w_{i}t)} = \prod_{i=1}^{m} \frac{d - w_{i}}{w_{i}}$$

Mini-course II

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$\mathcal{M}(X) := (-1)^{\ell+1} (C_*(X) - c(TM|_X - \nu))$$

equals the sum of the Milnor numbers: $\mathcal{M}(X) = \int_X \mu$.

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$\mathcal{M}(X) := (-1)^{\ell+1} (C_*(X) - c(TM|_X - \nu))$$

equals the sum of the Milnor numbers: $\mathcal{M}(X) = \int_X \mu$.

Our formula of $tp^{SM}(\mu)$ can be applied to a T-equivariant complete intersection $X\subset M$ with weighted homogeneous isolated singularities.

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated singularities embedded in a manifold M, the degree of the Milnor class

$$\mathcal{M}(X) := (-1)^{\ell+1} (C_*(X) - c(TM|_X - \nu))$$

equals the sum of the Milnor numbers: $\mathcal{M}(X) = \int_X \mu$.

Our formula of $tp^{SM}(\mu)$ can be applied to a T-equivariant complete intersection $X\subset M$ with weighted homogeneous isolated singularities.

The degree of **Equivariant Milnor class**

$$\mathcal{M}^{T}(X) = (-1)^{\ell+1} (C_{*}^{T}(X) - c^{T}(TM|_{X} - \nu))$$

equals the sum of the localization of the equivariant CSM class $C_*^T(\mu)=c^T(TM)\cdot tp^{SM}(\mu)$ to singular points.

Today's summary

• Tp for multi-singularities (Kazarian theory)

Today's summary

- Tp for multi-singularities (Kazarian theory)
- Stable invariants for w. h. map-germs can be computed by localizing Tp.

Today's summary

- Tp for multi-singularities (Kazarian theory)
- Stable invariants for w. h. map-germs can be computed by localizing Tp.
- As a higher Thom polynomial, **Segre-SM** class tp^{SM} is introduced.

Até amanhã. Tchau! また明日!