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Yesterday: main points were

@ Definition of Thom polynomials for mono-singularities

@ Torus action and Rimanyi's restriction method
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Yesterday: main points were
@ Definition of Thom polynomials for mono-singularities

@ Torus action and Rimanyi's restriction method

Today
e Thom polynomials for multi-singularities (M. Kazarian's theory)
o Application: Counting stable singularities

@ Higher Tp based on equivariant Chern-SM class theory

Toru Ohmoto (Hokkaido University) Mini-course |l July 25, 2012 3/42



Tp for multi-singularities of maps: Kazarian's theory

A multi-singularity is an ordered set 1 := (n1,--- ,7,) of mono-sing.
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Tp for multi-singularities of maps: Kazarian's theory

A multi-singularity is an ordered set 1 := (n1,--- ,7,) of mono-sing.
e.g., In case of (m,n) = (3,3), there are four non-mono stable types;

A% = AlAl, A:f = A1A1A1, A1A2, A2A1

b 4
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Tp for multi-singularities of maps: Kazarian's theory

Source mfd Target mfd
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Tp for multi-singularities of maps: Kazarian's theory

For f: M — N, the multi-singularity loci are defined by

1S

._ Jxg, -,z € M s.t. x; # xj,
( )._{mlem(f)\ fatax;isof typen; (2<i<r) }

L

v 31,2 € fNy) stz # 3y,
T =y eV | e s 2 )
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Tp for multi-singularities of maps: Kazarian's theory

For f: M — N, the multi-singularity loci are defined by

1S

._ Jxg, -,z € M s.t. x; # xj,
( )._{mlem(f)\ fatax;isof typen; (2<i<r) }

L

v 31,2 € fNy) stz # 3y,
T =y eV | e s 2 )

This is a finite-to-one map: let deg, 1) be the degree
degy 1) = the number of 7; in the tuple .

Remark that 72, - - - , 1, could be unordered for the above def.
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Tp for multi-singularities of maps: Kazarian's theory

Definition 1

The Landweber-Novikov class for f : M — N multi-indexed by
I= il’iz <. s

st =s1(f) = fla(f)ea(f)2-+) € H*(N)

where ¢;(f) = ¢;(f*TN —TM).
For simplicity we often denote s; to stand for its pullback f*s; € H*(M)
as well (i.e., omit the letter f*).

),
(c1),

so = fu(c2),  so = fulca),
(c})

s11 = fi(cic2),  Spo1 = fu(cs), - -+
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Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity n of stable-germs C™,0 — C™**k 0, there exists
a unique polynomial tp(n) in abstract Chern class c; and abstract
Landweber-Novikov class s; with rational coefficients, so that
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Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity n of stable-germs C™,0 — C™1* 0, there exists
a unique polynomial tp(n)_ in abstract Chern class ¢; and abstract
Landweber-Novikov class s 1 with rational coefficients, so that

for any stable map f : M — N of map-codim. k,

@ The locus in source is expressed by the polynomial evaluated by
ci = ci(f) = ci(f*TN —TM) and s; = s;(f) = f*f«(c!(f)):

tp(n)(f) = Dual [n(f)] € H*(M;Q)
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Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity n of stable-germs C™,0 — C™1* 0, there exists
a unique polynomial tp(n)_ in abstract Chern class ¢; and abstract
Landweber-Novikov class s 1 with rational coefficients, so that

for any stable map f : M — N of map-codim. k,

@ The locus in source is expressed by the polynomial evaluated by
¢i = i(f) = Gi(f*TN = TM) and s; = sr(f) = f*fu(c(f)):

tp(n)(f) = Dual [n(f)] € H*(M;Q)

@ The locus in target is expressed by a universal polynomial in s;(f)
tPrae() (f) = g Sxtp(n) = Dual [f(n(f))] € H*(N;Q)
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Tp for multi-singularities of maps: Kazarian's theory

Theorem 0.1 (M. Kazarian (2003))

Given a multi-singularity n of stable-germs C™,0 — C™1* 0, there exists
a unique polynomial tp(n)_ in abstract Chern class ¢; and abstract
Landweber-Novikov class s 1 with rational coefficients, so that

for any stable map f : M — N of map-codim. k,

@ The locus in source is expressed by the polynomial evaluated by
¢i = i(f) = Gi(f*TN = TM) and s; = sr(f) = f*fu(c(f)):

tp(n)(f) = Dual [n(f)] € H*(M;Q)

@ The locus in target is expressed by a universal polynomial in s;(f)
tPrae() (f) = g Sxtp(n) = Dual [f(n(f))] € H*(N;Q)

v

We call tp(n) the Thom polynomial of stable multi-singularity type 7
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Tp for multi-singularities of maps: Kazarian's theory

Example 0.2

Tp for multi-singularities of stable maps M"™ — N™ up to codim 3 are

type codim | tp

A 1 C1

Ao 2 C? + c2

A A, 2 c151 — 42 — 2¢y

As 3 ci’ + 3cico + 2¢3
1 2 2
5(c157 — 4cas1 — 4c152 — 2c1501 — 8¢is1

Ardidy 3 +40¢3 + 56¢1ca + 24c3)

A1 Ay 3 c182 + c1S801 — 66? — 12c1c2 — bc3

As A 3 C?Sl + c281 — 6C:f — 12¢1¢2 — 6e3

Toru Ohmoto (Hokkaido University) Mini-course |l July 25, 2012 9 /42



Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

@ Kazarian's proof relies on the topology of the classifying space of
complex cobordisms Q?*° MU (oo + k). There has not yet appeared
algebro-geometric proof so far —
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Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

@ Kazarian's proof relies on the topology of the classifying space of
complex cobordisms Q?*° MU (oo + k). There has not yet appeared
algebro-geometric proof so far —

In fact, this theorem touches deep enumerative problems in algebraic
geometry, e.g.

Gottsche conj. (thm) counting nodal curves on a surface,
Kontsevich's formula counting rational plane curves, ...
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Tp for multi-singularities of maps: Kazarian's theory

Remark 0.3

@ Kazarian's proof relies on the topology of the classifying space of
complex cobordisms Q?*° MU (oo + k). There has not yet appeared
algebro-geometric proof so far —

In fact, this theorem touches deep enumerative problems in algebraic
geometry, e.g.

Gottsche conj. (thm) counting nodal curves on a surface,
Kontsevich's formula counting rational plane curves, ...

@ To compute Tp for stable multi-singularities, Rimanyi’s restiction
method fits very well.
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Application: Counting stable singularities

Here we give an application of Tp theory.
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Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ f : C™,0 — C™, 0, and
a stable (mono/multi-)singularity type 7 of codimension n in the target.
Take a stable perturbation

fi:U—=C" (teACC,0eUcCC™)

so that fy is a representative of f and f; for t # 0 is a stable map.
Then the number of n(f;) is an invariant of the original germ f.
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Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ f : C™,0 — C™, 0, and
a stable (mono/multi-)singularity type 7 of codimension n in the target.
Take a stable perturbation

fi:U—=C" (teACC,0eUcCC™)

so that fy is a representative of f and f; for t # 0 is a stable map.
Then the number of n(f;) is an invariant of the original germ f.
Ex:

(m,1): £ Morse sing. (A1) = Milnor number p.

(2,2): # Cusp/Double folds = Fukuda-Ishikawa, Gaffney-Mond
m,n < 8: #f TB singularities = Ballesteros-Fukui-Saia ...
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Application: Counting stable singularities

Here we give an application of Tp theory.

Given a finitely determined map-germ f : C™,0 — C™, 0, and
a stable (mono/multi-)singularity type 7 of codimension n in the target.
Take a stable perturbation

fi:U—=C" (teACC,0eUcCC™)

so that fy is a representative of f and f; for t # 0 is a stable map.
Then the number of n(f;) is an invariant of the original germ f.
Ex:

(m,1): £ Morse sing. (A1) = Milnor number p.

(2,2): # Cusp/Double folds = Fukuda-Ishikawa, Gaffney-Mond
m,n < 8: #f TB singularities = Ballesteros-Fukui-Saia ...
USP-ICMC is the most important place about this theme !
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Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.
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Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.

Let f = (f1,--+, fn) : C"™,0— C",0 be w. h. germs
with weights wy, - -+ ,w,, and degrees di,--- ,d,, i.e.,

F@zr, o 0, = (@ fi(@), - o™ fu(@) (Vo e C?)
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Application: Counting stable singularities

Restrict our attention to the case of weighted homogeneous map-germs.

Let f = (f1,--+, fn) : C"™,0— C",0 be w. h. germs
with weights wy, - -+ ,w,, and degrees di,--- ,d,, i.e.,

F@ - amay) = (a® fi(@), - o™ fu(@)) (Yo € C)
Suppose f is finitely determined

Given a stable mono/multi-singularity  of codimension n in the target.
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Application: Counting stable singularities

Take a stable unfolding F' of f: Suppose that unfolding parameters have
weights r1,-- - , 7.

cm L cn

io l l Lo

n(F)c cmtk Lotk 5 P(p(F))
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Application: Counting stable singularities

Take a stable unfolding F' of f: Suppose that unfolding parameters have
weights r1,-- - , 7.

cm L cn

io l l Lo

n(F)c cmtk Lotk 5 P(p(F))

Take a generic (non-equivariant) section ¢; close to g so that ¢; is
transverse to the critical value set of F', then
it induces a stable perturbation f; of the original map fo = f.
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Application: Counting stable singularities

Take the canonical line bundle £ = Opn (1) over PV (N > 0)
and define

fo

69211(9@ (wz) = E() h— E1 = @;-n:lO]pN(dj)
io l l Lo
n(F) C EcoE 5 EioE S F@uF)

where E' = EszlOPN (r;) corresponding to unfolding parameters.
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Application: Counting stable singularities

Take the canonical line bundle £ = Opn (1) over PV (N > 0)
and define

fo

&L, Opn (w;) =: Eo - Ey = @;ﬂﬂ@]}w(dj)
it l l Lt
n(F) C EcoE 5 EioE S F@uF)

where E' = EszlOPN (r;) corresponding to unfolding parameters.

Perturb the embedding ¢( to yield a (non-equivariant) stable perturbation
ft : Eo — Ei of the original map fo = f,.
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Application: Counting stable singularities
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Application: Counting stable singularities
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Application: Counting stable singularities

Put a = ¢1(¢). In the total space H*(E; @ E'; Q) £ H*(P*>*; Q) = Qla],
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Application: Counting stable singularities

Put a = ¢1(¢). In the total space H*(E; @ E'; Q) £ H*(P*>*; Q) = Qla],

[F(n(F))] = tPua(n)(F) = Fh - a",

[E1] = ctop(p*E’) =ry 1 ab
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Application: Counting stable singularities

Put a = ¢1(¢). In the total space H*(E, & E'; Q) H*(IPOo Q) = Q[a],
iF(ﬂ(F))i = tptarget(ﬂ)(F) = Elh -a" ;
[F1] = ctop(D*E') =111, - ak.

Z"‘tharget( ) [Eli h N 7"1 tte Tk h

in(fe) = Crop(E1 & E) :d1~--dn'7“1"'7“k:d1"‘dn
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Application: Counting stable singularities

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity n of codimension n in target. Then

the 0-stable invariant of a finitely determined w. h. germ C"™ 0 — C™,0 is
computed by

)= ftp(m)(fo) — tp(n)(fo)
)= degyn-di---d, degin-wi- wm

Toru Ohmoto (Hokkaido University)

Mini-course Il

July 25, 2012 20 / 42




Application: Counting stable singularities

Theorem 0.4 (Ohm)

Given a stable mono/multi-singularity 1 of codimension n in target. Then,
the 0-stable invariant of a finitely determined w. h. germ C"™ 0 — C™,0 is
computed by

ftp(m)(fo) — tp(n)(fo)
deglﬂ dy---dy, _deg1ﬁ'w1“-wm

ﬁﬂ(ft) =

For our universal map fy and stable map F

o(F) = c(fo) =1+ ca(fo) +ea(fo) +--- = H((iiz)) and so(fo) = Ddn
and s7(fo) = ¢ (fo)so(fo).

Thus the polynomial tp(n) in ¢; = ¢;(fo) and s; = s7(fo) is written in
terms of w; and d;.
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Application: Counting stable singularities

(m,n) = (2,2): Tp of stable singularities of codim 2 are

tp(As) = +ca,  tp(A7) = c1s1 — 4cf — 2.
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Application: Counting stable singularities

(m,n) = (2,2): Tp of stable singularities of codim 2 are

tp(As) = +ca,  tp(A7) = c1s1 — 4cf — 2.

n7}= AC := Simplify[Expand[wl” {-1}w2"{-1} (c1”2+c2)]]; AC

d1%2+d22+2wl?+3dl (d2-wl-w2) +3wlw2+2w2?-3d2 (wl+w2)

out[7}= }
wlw2

:= Simplify[Expand[1/2d1~{-1}d2"{-1} ((dcl)"2 -4dcl”2 -2dc2)]]; A

—_—

——— (d1°d2-
2 wl? w2?
2wlw2 (2d2°+3wl®+5wlw2+3w2’-5d2 (wl+w2))+2d1? (d2> -2wlw2-d2 (wl+w2)) +

dl (d2®-2d2% (wl+w2) +10wlw2 (wl+w2) +d2 (w12—8wlw2+w22)))}
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Application: Counting stable singularities

(m,n) = (2,2): Tp of stable singularities of codim 2 are

tp(As) = +ca,  tp(A7) = c1s1 — 4cf — 2.

n7}= AC := Simplify[Expand[wl” {-1}w2"{-1} (c1”2+c2)]]; AC

d1%2+d22+2wl?+3dl (d2-wl-w2) +3wlw2+2w2?-3d2 (wl+w2)

out[7}= }
wlw2

:= Simplify[Expand[1/2d1~{-1}d2"{-1} ((dcl)"2 -4dcl”2 -2dc2)]]; A

—_—

——— (d1°d2-
2 wl? w2?
2wlw2 (2d2°+3wl®+5wlw2+3w2’-5d2 (wl+w2))+2d1? (d2> -2wlw2-d2 (wl+w2)) +

dl (d2®-2d2% (wl+w2) +10wlw2 (wl+w2) +d2 (w12—8wlw2+w22)))}

This coincides with Gaffney-Mond's computation (1991).
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Application: Counting stable singularities

(m,n) = (2,3): Tp of stable singularities of codim 2 in source are

tp(A1) = co, tp(A}) = (s — s1 — 2c180 + 2¢} + 2¢2).
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Application: Counting stable singularities

(m,n) = (2,3): Tp of stable singularities of codim 2 in source are

tp(A1) = co, tp(A}) = (s — s1 — 2c180 + 2¢} + 2¢2).

TpAl := Simplify[Expand[wl” {-1} w2~ {-1}c2]]; TPAl

{7d3wl +wl? +d2 (d3-wl-w2) +dl (d2+d3 -wl-w2) -d3 w2 +wlw2 +w22}
wlw2
TpAlll := Simplify[
Expand[1/6d1"{-1}d2"{-1}d3"{-1} (d"3-3d (dcl) + 2d (cl) "2 + 2dc2)]]; TpAlll

1
———— (d1? (d2?d3? - 3d2d3wlw2+2wl®w2?) +
6wl w23

2wl®w2® (d2? +d3%+2wl®+3d2 (d3-wl-w2) +3wlw2+2w2?-3d3 (wl+w2)) -
3dlwlw2 (d2°d3+2wlw2 (-d3+wl+w2) +d2 (d3? - 2wlw2-d3 <w1+w2))))}
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Application: Counting stable singularities

(m,n) = (2,3): Tp of stable singularities of codim 2 in source are

tp(A1) = co, tp(A}) = (s — s1 — 2c180 + 2¢} + 2¢2).

TpAl := Simplify[Expand[wl” {-1} w2~ {-1}c2]]; TPAl

{7d3wl +wl? +d2 (d3-wl-w2) +dl (d2+d3 -wl-w2) -d3 w2 +wlw2 +w22}
wlw2
TpAlll := Simplify[
Expand[1/6d1"{-1}d2"{-1}d3"{-1} (d"3-3d (dcl) + 2d (cl) "2 + 2dc2)]]; TpAlll

1
———— (d1? (d2?d3? - 3d2d3wlw2+2wl®w2?) +
6wl w23

2wl®w2® (d2? +d3%+2wl®+3d2 (d3-wl-w2) +3wlw2+2w2?-3d3 (wl+w2)) -
3dlwlw2 (d2°d3+2wlw2 (-d3+wl+w2) +d2 (d3? - 2wlw2-d3 <w1+w2))))}

This coincides with Mond's computation (1991).
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Application: Counting stable singularities

(m,n) = (3,3): Tp for A3 = ¢} + 3cica + 2c3

in36l= tpA3 :=¢cl1”3 + 3clc2 +2c3;
tpA3 / {wlw2w3} /. {cl -» al, c2 -» a2, c3 - a3}
1
oulaT= {7((d1+d2+d37w17w27w3)3+
wlw2w3

3(dl+d2+d3-wl-w2-w3) (d1d2+ (dl+d2) d3- (d1+d2+d3) wl+
wl? - (d1+d2+d3-wl) w2 +w2? - (d1 +d2+d3 -wl-w2) w3 +w3?) +
2 (d1d2d3- (d2d3+dl (d2+d3)) wl+ (dl+d2+d3) wl® -wl®-

(d1d2+ (d1+d2) d3 - (d1+d2+d3) wl+wl?) w2+ (dl+d2+d3-wl) w2® - w2’ -

(d1d2+ (d1+d2) d3 - (d1+d2+d3) wl+wl? - (dl+d2+d3 - wl) w2 +w2?) w3 +
(dl +d2 +d3 - wl - w2) w3? 7w33)>}
in@s)- Factor[Simplify[% /. {dl -» wl, d2 > w2, d3 » d, w3 »>w0}] ] // Simplify

}

(d-3w0) (d-2w0) (d-w0)

Out[38]= { 5
wowlw

Our formula is valid for any corank.
In case of corank one it coincides with Marar-Montaldi-Ruas.
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Application: Counting stable singularities

(m,n) = (3,3): Tp for A3

inj40)= AlAlAl := Simplify[
1/6(40c1®+56clc2+24c3-2cls01-8cl®sl-4c2sl+clsl®-4cls2) (wlw2wld) {-1} /.
{cl » al, c2 » a2, c3 -» a3, s0O -» sa0, sl » sal, s01 » sa0l,
s2 -» sa2, s3 - sa3, sll - sall, s001 > saool)]; AlAlAl

1
0 (dl+d2+d3-wl-w2-w3)>+

Out[40)= {{ m

d1%2d224d3? (d1+d2+d3-wl-w2-w3)?® 12d1d2d3 (dl+d2+d3-wl-w2-w3)?
- +
w12 w22 w3? wlw2w3

6 (dl+d2+d3-wl-w2-w3) (d1d2+ (dl+d2) d3 - (dl+d2+d3) wl+wl? -
1

(dl+d2+d3-wl) w2+w2? - (dl +d2+d3 -wl-w2) w3 +w3?) - ———
wlw2w3

6d1d2d3 (d1+d2+d3-wl-w2-w3) (d1d2+ (d1+d2) d3 - (dl+d2+d3) wl+
wl? - (dl+d2+d3-wl) w2 +w2” - (d1+d2+d3-wl-w2) w3 +w3®) +

24 (d1d2d3 - (d2d3+dl (d2+d3)) wl+ (d1 +d2+d3) wi? -wl® -
(d1d2+ (dl+d2) d3- (dl+d2+d3) wl+wl®) w2+ (dl+d2+d3-wl) w2? - w2’ -
(d1d2+ (dl+d2) d3 - (d1+d2+d3) wl+wl? - (dl+d2+d3-wl) w2 +w2®) w3+

(dl+d2+d3-wl-w2) w327w33)J}}

1= Factor[Simplify[% /. {dl -» wl, d2 > w2, d3 -» d, w3 > w0}]] // Simplify

H

(d-5w0) (d-4w0) (d-3w0) (d-2w0) (d-w0)

6 w0* wl w2
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Application: Counting stable singularities

(m,n) = (3,3): Tp for A1 Ay

n42= AlA2 := Simplify|[
(s2cl+s0lcl-6cl”3-12clc2 -6c3) (wlw2w3)"“{-1} /.
{cl » al, c2 » a2, c3 » a3, s0 » sa0, sl -» sal, sO1l -» sa01l,
s2 -» sa2, s3 -» sa3, sll - sall, s001 » sa001}]; AlA2

1 d1d2d3 (dl+d2+d3-wl-w2-w3)?

-6 (dl1+d2+d3-wl-w2-w3)>+ -

Outf42}= { {

wlw2w3

wlw2w3
12 (d1+d2+d3-wl-w2-w3) (d1d2+ (dl+d2) d3- (dl+d2+d3) wl+wl®-
1
(dl+d2+d3-wl) w2 +w2® - (d1+d2+d3-wl-w2) w3+w3?) + ———
wlw2w3

d1d2d3 (d1+d2+d3-wl-w2-w3) (d1d2+ (dl+d2)d3- (d1+d2+d3) wl+
wl? - (dl+d2+d3-wl) w2 +w2? - (dl+d2+d3-wl-w2)w3+w3?) -

6 (d1d2d3- (d2d3+dl (d2+d3)) wl+ (dl+d2+d3) wl? -wl’ -
(d1d2+ (d1+d2) d3 - (d1+d2+d3) wl+wl®) w2+ (d1l+d2+d3-wl) w2® - w2’ -
(d1d2+ (d1+d2)d3- (dl+d2+d3) wl+wl®- (d1+d2+d3-wl) w2 +w2?) w3+

1

43 - Factor[Simplify[Simplify([% /. {dl - wl, d2 > w2, d3 > d, w3 »>w0}]]] // Simplify

ower || )

(dl+d2+d3-wl-w2) w3®-w3?)

(d-4w0) (d-3w0) (d-2w0) (d-w0)

w0? wl w2

(Hokkaido University)



Tp for Morin maps: Porteous, Levine, Ando

Let us switch to the next theme: “Higher Tp”
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Tp for Morin maps: Porteous, Levine, Ando

Let us switch to the next theme: “Higher Tp”
Motivation:

For Morin maps f : M — N, i.e. stable maps having only Aj-singularities,
the closure Sj, := Ay(f) < M is a closed submanifold, then

L e(TSk) = ti(L+ 1 (TSk)+--+) € H (M)

is sometimes thought as " higher Thom polynomials”
(Y. Ando, H. Levine, |. Porteous).
Its leading term is nothing but ¢.(1) = Dual [S;] = tp(Ay).
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Tp for Morin maps: Porteous, Levine, Ando

Problem

@ In general (for non-Morin maps) the closure Sj is not smooth, so
¢(T'Sy) does not make sense.
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Tp for Morin maps: Porteous, Levine, Ando

Problem
@ In general (for non-Morin maps) the closure Sj is not smooth, so
¢(T'Sy) does not make sense.

@ The pushforward ¢, c(T'S) € H*(M) is not a polynomial in the
difference Chern class ¢;(f) = ¢;(f*TN —TM)
(Here f is a Morin map).
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@ In general (for non-Morin maps) the closure Sj is not smooth, so
¢(T'Sy) does not make sense.

@ The pushforward ¢, c(T'S) € H*(M) is not a polynomial in the
difference Chern class ¢;(f) = ¢;(f*TN —TM)
(Here f is a Morin map).

Solution

@ We employ Chern class for singular varieties to develop a theory.
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Tp for Morin maps: Porteous, Levine, Ando

Problem

@ In general (for non-Morin maps) the closure Sj is not smooth, so
¢(T'Sy) does not make sense.

@ The pushforward ¢, c(T'S) € H*(M) is not a polynomial in the
difference Chern class ¢;(f) = ¢;(f*TN —TM)
(Here f is a Morin map).

Solution
@ We employ Chern class for singular varieties to develop a theory.

@ A genuine generalization of Tp must be for the Segre class, the
Chern class of normal bundle ¢(v) (v =TM — TSk) if Si is smooth,
not of tangent bundle.
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Chern class for singular varieties

Let X be a (singular) complex algebraic variety.
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Chern class for singular varieties

Let X be a (singular) complex algebraic variety.

F(X): the abelian group of constructible functions over X,

a: X —7Z, a= ZaiﬂWi (a; € Z and W;: subvarieties)

finite

For proper morphisms f : X — Y, we define f, : F(X) — F(Y):

Faw) = [ dwe=x o) we)

For proper f: X — Y, g:Y — Z, it holds that (go f)« = g« © fs.

F : Var — Ab : covariant functor
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Chern class for singular varieties

M™(X): the group completion of the monoid generated by the

isomorphism classes (R-equiv.) of morphisms [p : M — X]| of manifolds
M to X.
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Chern class for singular varieties

M™(X): the group completion of the monoid generated by the

isomorphism classes (R-equiv.) of morphisms [p : M — X]| of manifolds
M to X.

Define e[p: M — X|:= pillps, cufp: M — X| := pi(c(TM) ~ [M])
MH(X)
F(X) H.(X)

Toru Ohmoto (Hokkaido University)

Mini-course |l

July 25, 2012 29 / 42



Chern class for singular varieties

M™(X): the group completion of the monoid generated by the

isomorphism classes (R-equiv.) of morphisms [p : M — X| of manifolds
M to X.

Define elp: M — X]:=p Ay, ¢i[p: M — X] := pu(c(TM) ~ [M])

M*(X)

Theorem 0.5 (MacPherson (1974))
Cy:=c,0e ! F(X)— H.(X) is well-defined.
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Chern class for singular varieties

Definition 2

Cy(X) := Ci(1x) is called the Chern-Schwartz-MacPherson class (CSM
class) of X.

- M. Schwartz (1965): relative Chern class for radial vector frames
- R. MacPherson (1974): local Euler obst. + Chern-Mather
-J-P. Brasselet (1981): ¢%“*(X) = C,(1lx).
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Chern class for singular varieties

Remark 0.6

o Naturality: f,Cy(a) = Cy(f«(cx)) for proper f: X - Y
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Chern class for singular varieties

Remark 0.6

o Naturality: f,Cy(a) = Cy(f«(cx)) for proper f: X - Y
e Normalization: Cy(1x) = ¢(TX) —~ [X] if X is non-singular.
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Chern class for singular varieties

Remark 0.6

o Naturality: f,Cy(a) = Cy(f«(cx)) for proper f: X - Y
e Normalization: Cy(1x) = ¢(TX) —~ [X] if X is non-singular.
@ Degree: For compact X, the pushforward of pt : X — pt is
ptCe(1w) = x(W) = [ 1.
In particular, C(X) = x(X)[pt] + --- + [X] € Hi(X)
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Chern class for singular varieties

Remark 0.6

o Naturality: f,Cy(a) = Cy(f«(cx)) for proper f: X - Y
e Normalization: Cy(1x) = ¢(TX) —~ [X] if X is non-singular.
@ Degree: For compact X, the pushforward of pt : X — pt is
ptCe(1w) = x(W) = [ 1.
In particular, C(X) = x(X)[pt] + --- + [X] € Hi(X)

@ Exclusion-Inclusion property = Additivity:
Ci(Maup) = Ci(1la) + Ci(1lp) — Ci(anB)
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Segre-SM class

Apply C, to a manifold:  Cy: F(M) — H*(M) (omit Dual)
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Segre-SM class

Apply C, to a manifold:  Cy: F(M) — H*(M) (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold W <% M, let v be the normal bundle,

Ci(Ly) = ti(c(TW)) = t4(c("TM —v)) = (T M) - t.c(—v)
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Segre-SM class
Apply C, to a manifold:  Cy: F(M) — H*(M) (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold W <% M, let v be the normal bundle,

Ci(Ly) = ti(c(TW)) = t4(c("TM —v)) = (T M) - t.c(—v)

e inverse normal Chern classes behaves well for transverse sections:

If f is transverse to W, the fiber square gives f*i.c(—vw) = tie(—vy)

W —W

M —M
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Segre-SM class

Apply C, to a manifold:  Cy: F(M) — H*(M) (omit Dual)

Inverse normal Chern class (Segre class):

For a closed submanifold W <% M, let v be the normal bundle,

Ci(Ly) = ti(c(TW)) = t4(c("TM —v)) = (T M) - t.c(—v)

e inverse normal Chern classes behaves well for transverse sections:

If f is transverse to W, the fiber square gives f*i.c(—vw) = tie(—vy)

W —W

M —M

e If W is singular, ¢(—v) is not defined.
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Segre-SM class

Then we define

Definition 3
The Segre-SM class for the embedding ¢ : W < M is defined to be

Ci(llw) = (TM) - MW, M) € H*(M).
Also for o € F(M), s°M(a, M) is defined.

o If W is smooth, s°M (W, M) = 1,¢(—v).

@ The Segre-SM class behaves well for transverse sections.

Toru Ohmoto (Hokkaido University) Mini-course |l July 25, 2012



Higher Thom polynomials

Given a K-invariant constructible function o : O(m,m + k) — Z.
For generic maps f: M — N of map-codim. k, we put a constr. ft

a(f): M —7Z, x € M + the value  of the germ f at z.
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Higher Thom polynomials

Given a K-invariant constructible function o : O(m,m + k) — Z.
For generic maps f: M — N of map-codim. k, we put a constr. ft

a(f): M —7Z, x € M + the value  of the germ f at z.

We then define Higher Tp by the following thm:
Theorem 0.7 (Ohm)

There exists a universal power series tp°*M (o) € Z[[c1, ca,---]] so that
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Higher Thom polynomials

Given a K-invariant constructible function o : O(m,m + k) — Z.
For generic maps f: M — N of map-codim. k, we put a constr. ft

a(f): M —7Z, x € M + the value  of the germ f at z.

We then define Higher Tp by the following thm:
Theorem 0.7 (Ohm)

There exists a universal power series tp°*M (o) € Z[[c1, ca,---]] so that

for any generic maps f : M — N, the series evaluated by ¢; = ¢;(f)
expresses the Segre-SM class s°M (a(f), M), i.e.,

Cu(a(f)) = (TM) - tp°M(a)(f) € H*(M)
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Higher Thom polynomials

Given a K-invariant constructible function o : O(m,m + k) — Z.
For generic maps f: M — N of map-codim. k, we put a constr. ft

a(f): M —7Z, x € M + the value  of the germ f at z.

We then define Higher Tp by the following thm:
Theorem 0.7 (Ohm)

There exists a universal power series tp°*M (o) € Z[[c1, ca,---]] so that
for any generic maps f : M — N, the series evaluated by ¢; = ¢;(f)
expresses the Segre-SM class s°M (a(f), M), i.e.,

Cu(a(f)) = (TM) - tp°M(a)(f) € H*(M)

Put tpSM () := tp>M (1) for a = 157 supported on the orbit closure.
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Higher Thom polynomials

Remark 0.8

o Since sM (W, M) = ¢(TM)~ ' - C,(ly) = Dual [W] + h.o.t,
the leading term of the series is nothing but the Thom polynomial:

SM'(

tp°™ (M) = tp(n) + h.o.t

o For generic maps f : M — N, the Euler characteristic of the singular
locus of type 1 is universally expressed by

x0(D) = /M o(TM) - tp5™ @) (5).
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Higher Thom polynomials

Remark 0.9

@ To compute low dimensional terms of the universal power series
tp°M (7), Rimanyi's method is very effective.
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Higher Thom polynomials

@ To compute low dimensional terms of the universal power series
tp°M (7), Rimanyi's method is very effective.

@ For singular varieties several kinds of Chern classes are available:

CSM class C(X), Chern-Mather class ¢™ (X) = C,(Euy), Fulton's

Chern class and Fulton-Johnson class.
So Higher TP depends on your choice.

Remark 0.9
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Higher m polynomials

The following is a very special case: we have a closed formula:
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Higher Thom polynomials

The following is a very special case: we have a closed formula:

Theorem 0.10 (Ohm)

Let{=m —n>0. Let u: O(m,n) — Z be the Milnor number function,
which assigns to any ICIS germ its Milnor number, O otherwise.
Then, for a stable map f : M — N, the Segre-SM class

M (u(f), M) = c«(TM)~'C.(uu(f)) is universally expressed by
tp®Mp) = (D' A+eateat+ )1t tr)

where ¢; = Cl(f) = Ci(f*TN = TM), C; = Ez(f) = Ci(TM = f*TN)
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Higher Thom polynomials

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Letn:C™,0 — C™,0 be a weighted homogeneous ICIS,
and take a universal map f, : Eg — FEy associated to its weights and
degrees. Then, the Milnor number of ICIS n is expressed by

= M_ _1\ym—n Cn(El)C 3 B
Mn_/Eo ctop(Eo) =D <Cm(E0) m—n(Eo — E1) 1>
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Higher Thom polynomials

Corollary 0.11 (Greuel-Hamm, Guisti, Damon, Alexandrov, etc)

Letn:C™,0 — C™,0 be a weighted homogeneous ICIS,
and take a universal map f, : Eg — FEy associated to its weights and
degrees. Then, the Milnor number of ICIS n is expressed by

= M_ _1\ym—n Cn(El)c B 3
Mn_/Eo ctop(Eo) =1 <Cm(E0) m—n(Eo — E1) 1)

| A\

Example 0.12

In case of n =1, i.e.,  is a w. h. isolated hypersurface singularity:

m Cm(Eo — E7) _ top. (=D)™TIA + (w; — d)t) _ ﬁ d — w;

= ()" =~ top. TI(1 + w;t)

=1

v
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Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated

singularities embedded in a manifold M, the degree of the Milnor class
M(X) = (-1)FH(Cu(X) = (TM|x — v))

equals the sum of the Milnor numbers: M(X) = [, p.
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Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated
singularities embedded in a manifold M, the degree of the Milnor class

M(X) = (-1)FH(Cu(X) — o(TM|x — v))

equals the sum of the Milnor numbers: M(X) = [, p.

Our formula of tp>™ (1) can be applied to a T-equivariant complete
intersection X C M with weighted homogeneous isolated singularities.

v

Toru Ohmoto (Hokkaido University) Mini-course |l July 25, 2012 40 / 42



Higher Thom polynomials

Remark 0.13

T. Suwa proved that for a complete intersection variety X with isolated
singularities embedded in a manifold M, the degree of the Milnor class

M(X) = (-1)FHCu(X) = (TM|x ~v))
equals the sum of the Milnor numbers: M(X) = [, p.

Our formula of tp>™ (1) can be applied to a T-equivariant complete
intersection X C M with weighted homogeneous isolated singularities.
The degree of Equivariant Milnor class

M (X) = (-1)*H(CF (X) — N (TM|x —v))

equals the sum of the Iocalization of the equivariant CSM class
CT(p) = (T M) - tp>™ (1) to singular points.

v
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Today's summary

e Tp for multi-singularities (Kazarian theory)
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Today's summary

e Tp for multi-singularities (Kazarian theory)

o Stable invariants for w. h. map-germs can be computed by
localizing Tp.
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Today's summary

e Tp for multi-singularities (Kazarian theory)

o Stable invariants for w. h. map-germs can be computed by
localizing Tp.

@ As a higher Thom polynomial, Segre-SM class tp°M is introduced.
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Até amanh3. Tchau! F7-BHH !
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