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What’s about ?

This mini-course is about

... about the polynomial named in honor of him
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. . . . . .

What’s about ?

• Alg. equation over C ( K-classification)

P (x) = xd + a1x
d−1 + · · · + ad = 0, ]vir sol. = d

taking account of multiplicities e = 1 + µ (nondeg. sol. ↔ µ = 0)
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. . . . . .

What’s about ?

• Function y = P (x) ( A-classification)

f : M → N (M = N = P1 = C ∪ {∞})

]vir crit. pt =
∫

M
µ(f, x) dχ = 2d − 2 = deg f · χ(N) − χ(M)

= c1(TN) ∩ f∗[M ] − c1(TM) ∩ [M ]
= c1(f∗TN − TM) ∩ [M ]
= Thom polynomial of A1 for f
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. . . . . .

What’s about ?

I will talk about a generalization of this picture, in particular,

hunting invariants of map-germs by localizing ‘higher Tp’

Contents

Preliminary: very basics

Thom polynomials for singularities of maps

Thom polynomials for multi-singularities of maps

Higher Thom polynomials associated to CSM class

Computing numerical invariants: Bezout type theorems

Tp for real singularities and Vassiliev type invariants

We works in the complex holomorphic context throughout.
To be elementary and self-contained as much as possible.

Toru Ohmoto (Hokkaido University) Mini-course I July 24, 2012 6 / 33



. . . . . .

Classification of map-germs: Equivalence

First we recall a few basic notions about stable singularities of maps:

O(m,n) := { f : Cm, 0 → Cn, 0 holomorphic }

A-classification
Classifies map-germs up to isomorphisms of source and target
A = Diff(Cm, 0) × Diff(Cn, 0) acts on O(m,n) by
(σ, τ).f := τ ◦ f ◦ σ−1

K-classification
Classifies the zero locus f−1(0) as a scheme (i.e., defining ideal)
up to the isomorphisms of source.
K ⊂ Diff(Cm × Cn, 0), preserving fibers ∗ × Cn and Cm × 0, acts on
O(m,n) measuring the tangency of graph y = f(x) and y = 0
A ⊂ K Thus, orbits A.f ⊂ K.f
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. . . . . .

Classification of map-germs: Infinitesimal stability

f = (x3 + yx, y) and g = (x3, y) in O(2, 2) are K-equivalent
but not A-equivalent. A.f 6= K.f

The A-class of f = (x3 + yx, y) is called a cusp or A2-singularity.
The discriminant (=singular value curves on the plane) looks as

f : Cm, 0 → Cn, 0 is a stable germ if taking any small perturbation of
any representative f : U → Cn, still the same singularity remains at
some point nearby 0. The above cusp singularity is stable.

(J. Mather IV) If f is a stable germ, A.f = {Stable germs} ∩ K.f
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. . . . . .

Classification of map-germs: Jet-extension

Given a map f : M → N , we may think of it as

a family of mono-germs f : M, x → N, f(x)
parameterized by the source space M .

(cf. a family of multi-germs parametrized by the target N)

J(TM, TN)

��
M

jf
99ssssssssss

(id,f)
// M × N

f : M,x → N, y is stable
⇐⇒ jf : M → J(TM, TN) is transverse to the A-orbit at x.
⇐⇒ jf : M → J(TM, TN) is transverse to the K-orbit at x (Mather)
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. . . . . .

Classification of map-germs: Jet-extension

Notation: For a K (or A)-orbit η in O(m,n), define

η(f) := { x ∈ M | the germ f at x is of type η } = jf−1(η(M,N))

J(TM, TN)

��
M

jf
99ssssssssss

(id,f)
// M × N

Of our particular interest is

Dual [η(f)] ∈ H∗(M)

If codim η = dim M and M compact, this gives ] η-singular pts. 　
“counting η-singular points = describing this cohomology class”
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. . . . . .

Chern class of vector bundles: Definition

Recall a basic notion in topology:

A vector bundle p : E → M is a locally trivial fibration with fiber Cn and
structure group GLn.

The right one is called the trivial bundle.
How can we measure ’non-trivial gluing’ in the left?
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. . . . . .

Chern class of vector bundles: Definition

Recall a basic notion in topology:

Take a section s : M → E and observe its intersection with Z, that leads
us the definition of the top Chern class of E

cn(E) := s∗Dual [Z] = Dual [s−1(Z)] ∈ H2n(M ; Z)

For the above picture, cn(Left) 6= 0 and cn(Right) = 0
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. . . . . .

Chern class of vector bundles: Definition

.

Theorem 2.1 (or Definition: see Milnor’s or Hirzebruch’s textbooks. )

.

.

.

. ..

.

.

The Chern class of complex vector bundles is uniquely characterized as
the assignment

vector bdle E → M  ci(E) ∈ H2i(M ; Z), (i = 0, 1, 2, · · · )

satisfying the following axioms:

c0(E) = 1 and ci(E) = 0 (i > n = rank E), i.e.,

c(E) :=
∑
i≥0

ci(E) = 1 + c1(E) + · · · + cn(E) : total Chern class

c(f∗E) = f∗c(E) for the pullback via f : M ′ → M : naturality

c(E ⊕ F ) = c(E) · c(F ) : Whitney sum formula

c1(OP1(1)) equals the divisor class a ∈ H2(P1) : normalization
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. . . . . .

Chern class of vector bundles: Remark

Trivial bundle: c1(ε1) = 0, hence for the trivial n-bundle,
c(εn) = c(⊕ε1) = 1.

Tensor product of line bundles `1, `2 over M :

c1(`1 ⊗ `2) = c1(`1) + c1(`2) (additive group law)

The Chern class of a complex manifold M means c(TM) of the
tangent bundle. The top Chern class is the Euler characteristic:

cn(TM) _ [M ] = χ(M) · [pt] ∈ H0(M)

That is the Poincaré-Hopf theorem : for a vector field
v : M → TM

cn(TM) =
∑

Ind(v, p) P.H.= χ(M)
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. . . . . .

Chern class of vector bundles: Remark

Difference Chern class: To measure the difference between two vector
bundles E and F over the same base space, we define by using formal
expansion 1

1+A = 1 − A + A2 − A3 + · · ·

c(F − E) :=
1 + c1(F ) + c2(F ) + · · ·
1 + c1(E) + c2(E) + · · ·

Obviously,

- If F = E ⊕ E′, then c(F − E) = c(E′) by Whitney sum formula.

- For line bundles, c(`′ − `) = 1+b
1+a = (1 + b)(1 − a + a2 − · · · ) where

a = c1(`) and b = c1(`′)
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. . . . . .

Thom polynomials of stable singularities

Now, return back to our setting:

Let η ⊂ J(m,n) be a K-orbit. Given a stable map f : M → N ,

J(TM, TN)

��

η(M,N)? _oo

η(f) � � // M

jf
::ttttttttttt

(id,f)
// M × N

How to describe Dual [η(f)] ∈ H∗(M)
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. . . . . .

Thom polynomials of stable singularities

.

Theorem 3.1 (Thom (’57), Damon (’72) etc)

.

.

.

. ..

.

.

There exists a unique polynomial tp(η) ∈ Z[c1, c2, · · · ] in abstract Chern
classes so that

homogeneous in degree = codim η (deg ci = 2i)
it depends only on η ⊂ J(∗, ∗ + k),
for any generic map f : M → N of map-codim. dim N − dim M = k,
the polynomial evaluated by ci = ci(f) := ci(f∗TN − TM)
expesses the singular locus of type η:

tp(η)(f) = Dual [η(f)] ∈ H2 codim η(M)

We call tp(η) the Thom polynomial of stable singularity type η
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. . . . . .

Thom polynomials of stable singularities

.

Example 3.2 (Thom (’56): Case of map codimension k = 0)

.

.

.

. ..

.

.

Thom polynomials of stable singularities C2, 0 → C2, 0 are

tp(A0) = 1, tp(A1) = c1, tp(A2) = c2
1 + c2

type normal form

A0(regular) (x, y) 7→ (x, y)
A1(fold) (x, y) 7→ (x2, y)
A2(cusp) (x, y) 7→ (x3 + xy, y)

More examples of stable singularities Cn, 0 → Cn, 0,

tp(A3) = c3
1 + 3c1c2 + 2c3,

tp(A4) = c4
1 + 6c2

1c2 + 2c2
2 + 9c1c3 + 6c4,

tp(I22) = c2
2 − c1c3, · · ·
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. . . . . .

Localization formula

Let’s compute tp(A2) by the restriction method due to Richard Rimanyi.
Since codim A2 = 2, the Thom polynomial has the form

tp(A2) = Ac2
1 + Bc2

and we want to determine the unknowns A,B.

The key point is that the normal forms of stable germs admit a natural
torus action C∗ = C − {0}:

(x, y)
A2 //

HH (x3 + yx, y)
II

ρ0 = α ⊕ α2 ρ1 = α3 ⊕ α2 α ∈ C∗
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. . . . . .

Localization formula

Let us think of α as the gluing map for the canonical line bundle
` = OPN (1) over PN (N � 0).

Define two vector bundles of rank 2

E0 := ` ⊕ `⊗2, E1 := `⊗3 ⊕ `⊗2

That is, take {Ui} of the base giving a local trivialization of `;
glueing maps gij : Ui ∩ Uj → GL2 for E0 and E1 are of the form

Ui ∩ Uj
α→ C∗ ρ→ GL2, ρ0 =

[
α 0
0 α2

]
, ρ1 =

[
α3 0
0 α2

]
,

respectively.
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. . . . . .

Localization formula

Let us think of α as the gluing map for the canonical line bundle
` = OPN (1) over PN (N � 0). Define two vector bundles of rank 2

E0 := ` ⊕ `⊗2, E1 := `⊗3 ⊕ `⊗2

The normal form of A2, (x, y) 7→ (x3 + yx, y), is invariant under the
action, thus we can glue the map on Ui’s together.

This defines a stable
map fA2 : E0 → E1 between the total spaces

E0

fA2 //

p0 !!B
BB

BB
BB

B E1

p1}}||
||

||
||

PN

A2-singularity locus A2(fA2) = the zero section of E0.
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. . . . . .

Localization formula
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. . . . . .

Localization formula

Compute the Chern classes. Put a = c1(`) and then

H∗(PN ) = Z[a]/(aN+1), N � 0

Note that H∗(E0) = H∗(E1) = H∗(PN ) via the pullback p∗0 and p∗1.

c(E0) = c(` ⊕ `⊗2) = (1 + a)(1 + 2a),

c(E1) = c(`⊗3 ⊕ `⊗2) = (1 + 3a)(1 + 2a)

c(fA2) = c(f∗TE1 − TE0) = c(p∗1E1 − p∗0E0) = (1+3a)(1+2a)
(1+a)(1+2a) = 1+3a

1+a

= 1 + 2a − 2a2 + 2a3 − · · ·

Thus we have c1(fA2) = 2a, c2(fA2) = −2a2, ... etc.
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. . . . . .

Localization formula

Apply the Thom polynomial theorem to this map fA2 : E0 → E1,

tp(A2)(fA2) = Dual [A2(fA2)]

Substitute c2(E0) = 2a2, c1(fA2) = 2a, c2(fA2) = −2a2.

tp(A2)(fA2) = Ac2
1 + Bc2

= A(2a)2 + B(−2a2) = (4A − 2B)a2

Dual [A2(fA2)] = Dual [Zero] = c2(E0) = 2a2

Thus we get
2A − B = 1
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. . . . . .

Localization formula

Do the same thing for other singularities:

(x, y)
A1 //

ρ0=α⊕β

HH (x2, y)

ρ1=α2⊕β

II
α ∈ C∗, β ∈ C∗

We obtain a stable map fA1 : E0 → E1; It has only A1-singularities, so
the A2-singularity locus A2(fA1) is empty. Thus, Tp Theorem says that

tp(A2)(fA1) = Dual [∅] = 0

Since c(fA1) = (1+2a)(1+b)
(1+a)(1+b) = 1 + a − a2 + · · · , one obtains

A − B = 0

Combine it with 2A − B = 1, gets A = B = 1, i.e., tp(A2) = c2
1 + c2
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. . . . . .

Localization formula

.

Remark 3.3

.

.

.

. ..

.

.

Rimanyi’s restriction method works well for simple orbits in
classification up to the lowest codimension of moduli strata of orbits.
In fact the restriction of tp to an orbit is the Atiyah-Bott localization
for torus action (the origin is a fixed point).

The universal map fη : E0 → E1 is a key ingredient in
Thom-Pontrjagin-Szücs construction of classifying space of singular
maps.

Why the difference Chern classes ci(f) = ci(f∗TN − TM) arise ?
It is that the K-equivalence admits a stabilization of dimensions: the
embedding J(m,n) → J(m + r, n + r), jf(0) 7→ j(f × idr)(0), is
transverse to any K-orbits (not true for A-orbits).
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. . . . . .

Tp for A-finite singularities

What’s then about Tp for unstable but A-finite singularities of maps?

It makes sense.
But such a Tp is no longer a polynomial in ci(f) in general
and it’s for families of maps: a proper setting should be as follows:
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. . . . . .

Tp for A-finite singularities

Consider the diagram

X
f //

p0   A
AA

AA
AA

Y

p1~~~~
~~

~~
~

B

where X, Y,B are complex manifolds, p0 : X → B and p1 : Y → B are
submersions of constant relative dimension, say dim = 2.

For each x ∈ X, a map-germ of f restricted to the fiber is defined:

f |p−1
0 (p0(x)) : C2, 0 → C2, 0 (centered at x and f(x))

Given an A-finite singularity type η, the singularity locus η(f) ⊂ X and
the bifurcation locus Bη(f) = p0(η(f)) ⊂ B are defined.
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. . . . . .

Tp for A-finite singularities

.

Theorem 4.1

.

.

.

. ..

.

.

Let η be an A-finite singularity type. For generic maps f : X → Y ,
Dual [η(f)] ∈ H∗(X) is expressed by a universal polynomial tpA(η) in the
Chern class ci = ci(TX/B) and cj = cj(TY/B) of relative tangent bundles.

Dual [Bη(f)] ∈ H∗(B) is also expressed by the pushforward p0∗tp
A(η).

η(f)

p0

��

� � // X
jf //

p0

��

J(TX/B, f∗TY/B)

Bη(f) � � // B

.

Remark 4.2

.

.

.

. ..

.

.

The case of rel. dim. 1: Kazarian-Lando for the study of Hurwitz numbers.
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. . . . . .

Tp for A-finite singularities

A-classification of C2, 0 → C2, 0 (Rieger-Ruas, Arnold-Platonova)

type codim miniversal unfolding

lips(beaks) 3 (x3 + xy2 + ax, y)
swallowtail 3 (x4 + xy + ax2, y)
goose 4 (x3 + xy3 + axy + bx, y)
gull 4 (x4 + xy2 + x5 + axy + bx, y)
butterfly 4 (x5 + xy + x7 + ax3 + bx2, y)
I1,1
2,2 (dertoid) 4 (x2 + y3 + ay, y2 + x3 + bx)
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. . . . . .

Tp for A-finite singularities

.

Example 4.3 (Ohm)

.

.

.

. ..

.

.

Tp for A-classification of map-germs C2, 0 → C2, 0 is defined as

tpA(η) ∈ Z[c1, c2, c
′
1, c

′
2]

where ci, c
′
i are Chern classes of relative tangent bundles:

lips/beaks −2c3
1 + 5c2

1c
′
1 − 4c1c

′2
1 − c1c2 + c2c

′
1 + c′31

swallowtail −6c3
1 + 11c2

1c
′
1 − 6c1c

′2
1 + 7c1c2 − 5c1c

′
2 − 5c′1c2 + 3c′1c

′
2 + c′31

goose 8c4
1 − 24c3

1c
′
1 + 26c2

1c
′2
1 − 12c1c

′3
1 + 2c′

4
1

+4c2
1c2 − 6c1c

′
1c2 + 2c′

2
1c2

gull 6c4
1 − 17c3

1c
′
1 + 17c2

1c
′2
1 − 7c1c

′3
1 + c′

4
1

−c2
1c2 + 5c2

1c
′
2 + c1c

′
1c2 − 7c1c

′
1c

′
2 + 2c′

2
1c

′
2 − c2

2 + c′
2
2

butterfly 24c4
1 − 50c3

1c
′
1 − 46c2

1c
′2
1 − 10c1c

′3
1 + c′

4
1 − 46c2

1c2 + 6c2
1c

′
2

+60c1c
′
1c2 − 20c1c

′
1c

′
2 − 20c′

2
1c2 + 6c′

2
1c

′
2 + 3c2

2 − 3c′
2
2

I1,1
2,2 c2

2 − c1c2c
′
1 + c2c

′2
1 + c2

1c
′
2 − 2c2c

′
2 − c1c

′
1c

′
2 + c′

2
2
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. . . . . .

Today’s summary

Definition of Thom polynomials of stable singularities: That is a
universal expression in terms of ci = ci(f∗TN − TM) s.t.

tp(η)(f) = Dual [η(f)] ∈ H∗(M)
Torus action and computation of Tp
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. . . . . .

Até amanhã. Tchau !

ではまた明日！

Toru Ohmoto (Hokkaido University) Mini-course I July 24, 2012 33 / 33


	Classification theory of singularities of maps
	Chern class of vector bundles and manifolds
	Thom polynomials in K-classification of map-germs
	Thom polynomials in A-classification of map-germs

