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In these lectures we shall give results about non-isolated singularities. We shall omit some proofs.
These ones can be find in the litterature. We give many references for the reader.

We shall try to enounce the results as clearly as possible. We hope this will give a lead to students
in the maze of the theory of singularity.

1 Critical points of polynomials

1.1 Polynomial functions

Let p0 be a point of Kn+1, where K is either the field of real numbers R or the field C of complex
numbers. The point p0 is called a critical point of a K-polynomial function f , if all the partial
derivatives ∂f/∂X0, . . . , ∂f/∂Xn of f vanish at p0:

∂f/∂X0(p0) = . . . = ∂f/∂Xn(p0) = 0.

If the point p0 is a critical point of f , the value f(p0) is called a critical value of f .

For K-polynomial functions one has a more precise result than Sard’s Lemma (see [15] §2 and 3):

Proposition 1.1 A K-polynomial function has a finite number of critical values.

Proof. Let C(f) be the set of critical points of the polynomial function f . The set C(f) is a
K-algebraic subset of Kn+1.

Let Σ1 be the set of singular points of C(f). It is an algebraic subset of Σ0 := C(f) (see [16]
Lemma 2.2 and [21]).

We can define by induction Σi as the singular locus of Σi−1. It is a proper K-algebraic subset of
Σi−1:

Σi ⊂ Σi−1

and Σi−1 \ Σi is a manifold.

Hilbert finiteness theorem implies that the decreasing sequence of K-algebraic sets Σ0 := C(f), Σ1,
. . ., Σi, . . . is finite. Therefore, we have a finite partition:

C(f) = (Σ0 \ Σ1)
∐

. . .
∐

(Σi−1 \ Σi)
∐

. . .
∐

Σk,

which shows that the K-algebraic subset C(f) of Kn+1 is the disjoint union of differences of K-
algebraic sets and each difference is a smooth manifold. Now, we have (see [16] Appendix A
Corollary A.4):

Lemma 1.2 The difference E \ F of K-algebraic subsets of Kn+1, which is a smooth manifold, is
the finite union of connected smooth manifolds.

Let us assume the Lemma.

By the Lemma 1.2 the K-algebraic subset C(f) of Kn+1 is a finite union of connected manifolds:

C(f) = V1

∐
. . . . . .

∐
V`.

3



The restriction of f to any of these manifolds Vi, 1 ≤ i ≤ ` is critical. Since Vi is connected, the
restriction of f to Vi is constant. Therefore, the critical values of f are in finite number.

It remains to prove the Lemma.

We have to prove that the difference E \ F of K-algebraic subsets of Kn+1, which is a smooth
manifold, is the finite union of connected manifolds.

To prove this lemma, it is enough to consider the case K = R. Let f1, . . . , fr be real polynomials
which define F on E:

F = E ∩ {f1 = . . . = fr = 0}.

Since the base field is the field of real numbers, the subset F is also defined by the polynomial∑r
1 f

2
i :

F = E ∩ {
r∑
1

f2
i = 0}.

Considering the map ϕ : E \ F → R defined by:

p 7→ 1
f2

1 (p) + . . .+ f2
r (p)

,

The projection onto E shows that the graph G of ϕ is diffeomorphic to E \ F .

The set G is also a real algebraic subset of Rn+1 × R defined by the intersection:

(E × R) ∩ {T (
r∑
1

f2
i ) = 1},

where T is the coordinate of Rn+1 × R given by {0} × R.

Now the space G is a closed manifold embedded in Rn+1×R. For almost all points p of Rn+1×R,
the square of the distance function to the point p is a non-degenerate function in the sense of
Morse (see [17] Theorem 6.6). The critical points of such a function are isolated. They form a real
algebraic subset of Rn+1×R whose points are isolated, so it must be a finite set (see [16] Appendix
A, Corollary A.2). Therefore, by applying Morse theory [17], the space G has the homotopy type
of a finite CW -complex. In particular, the number of connected components of G must be finite.

This ends the proof of the Lemma and therefore the proof of our Proposition.

1.2 Restriction to non-singular differences

Now, consider the restriction of a K-polynomial function to a difference of K-algebraic sets E \ F ,
which is a smooth manifold.

A result similar to Proposition 1.1 is also true. In fact the proof is analogous to the proof that we
have just done:

Proposition 1.3 The restriction of a K-polynomial function to a difference of K-algebraic sets
E \ F which is non-singular has a finite number of critical values.
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Proof: Let ϕ the restriction of the polynomial function f : KN → K to E. Let us define the critical
locus C(ϕ) of ϕ as the union of the singular locus of E and the subset of the non-singular subset
of E where ϕ is critical. The set C(ϕ) is a K-algebraic subset of E.

We just notice that the critical locus of the restriction of ϕ to E \ F is a difference of K-algebraic
sets C(ϕ) \ F. Then, one proceeds as in the proof of Proposition 1.1.

One has:

C(ϕ) \ F = (Σ0 \ (F ∪ Σ1))
∐

. . .
∐

(Σi−1 \ (F ∪ Σi))
∐

. . .
∐

(Σk \ F ),

where Σ0 = C(ϕ), Σi = Σi−1 and Σk+1 = ∅.

Lemma 1.2 tells that C(ϕ) \F is the disjoint union of a finite number of connected manifolds. The
restriction of ϕ to each of these connected components is critical, so it must be constant. This
implies Proposition 1.3.

1.3 Comments

The preceding result can be adapted to analytic functions. For instance, let f : (KN , 0) → (K, 0)
be the germ of a K-analytic function. Then one can prove that there is ε > 0 such that there exists

η > 0 for which the space f−1(t) ∩
◦
Bε(0) for t, η > |t| > 0, is a K-analytic manifold.

We usually write that, let ε and η such that 1 � ε � η > 0, then the space f−1(t) ∩
◦
Bε(0) is an

analytic manifold for η > |t| > 0.

2 The fibration theorem (isolated singularity case)

2.1 The local link

Let us assume that the complex polynomial function f : Cn+1 → C has an isolated critical point
at p0. In this case we shall prove that we can associate a locally trivial smooth fibration to the
critical point.

The difference f−1(f(p0))\C(f) is a manifold. As a consequence of Proposition 1.3, the restriction
of the square of the distance to p0 to f−1(f(p0)) \ C(f) has no critical value in the open interval
(0, ε0) when ε0 is a sufficiently small > 0 number. Therefore, for any ε, ε0 > ε > 0, the intersection
Sε(p0) ∩ f−1(f(p0)) of f−1(f(p0)) with the sphere Sε(p0) of Cn+1 centered at p0 with radius ε is a
manifold Kε(p0).

In fact, the square of the distance to the point p0 defines a smooth map of f−1(f(p0)) \ C(f) into
the real line R. The map induces a trivial fibration onto the open interval (0, ε0). The fibers of this
fibration are the manifolds Kε(p0) with ε, ε0 > ε > 0. They are diffeomorphic between each other,
as well as the pairs (Sε(p0),Kε(p0)). This is why (by abuse of language) we call Kε(p0) the link of
the point p0 on the hypersurface f−1f(p0).
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2.2 A fibration theorem

Let us choose ε, ε0 > ε > 0. The Proposition 1.1 implies that there is ηε, such that, for any η,
ηε > η > 0, the hypersurfaces f−1(f(p0) + t) are non singular for any t, η ≥ |t| > 0. Furthermore,
since, by definition of ε0 > 0, the sphere Sε(p0) intersects f−1(f(p0)) transversally in Cn+1, by
continuity, the hypersurfaces f−1(f(p0) + t) are transverse in Cn+1 to the sphere Sε(p0) for any t,
η ≥ |t| > 0.

We have:

Proposition 2.1 Let us choose ε and η as above. The map:

ϕε,η : Bε(p0) ∩ f−1(S1
η(f(p0)))→ S1

η(f(p0))

induced by the polynomial function f , is a locally trivial smooth fibration over the circle S1
η(f(p0)).

Proof. Since, for z ∈ S1
η(f(p0)), the fibers f−1(z) are transverse in Cn+1 to the sphere Sε(p0) the

restriction of ϕε,η to the boundary of Bε(p0) ∩ f−1(S1
η(f(p0))) is submersive. It is also obviously

surjective. Since the fibers f−1(z) for z ∈ S1
η(f(p0) are non singular, the restriction of ϕε,η to the

interior
◦
Bε ∩ f−1(S1

η(f(p0)) is also submersive and surjective. We can conclude using Ehresmann
Lemma.

2.3 Ehresmann Lemma

We have a lemma by C. Ehresmann (see e.g. [3] (20.8) problème 4, or see also [1] Theorem 8.12 p.
84 when the boundary is empty):

Lemma 2.2 (Ehresmann’s Lemma) Let (M,∂M) be a smooth manifold M with boundary ∂M .
Let ϕ : M → N be a proper smooth map onto a connected manifold N . Assume:

1. The map ϕ is proper;

2. The restriction of ϕ to ∂M is submersive and surjective onto N ;

3. The restriction of ϕ to M is submersive and surjective onto N .

Then, the map ϕ is a locally trivial smooth fibration.

Using this lemma, we obtain immediately a proof of Proposition 2.1.

Exercise: Prove that, if 1� ε� η > 0, the different fibrations ϕε,η are isomorphic.

The fibration defined in Proposition 2.1 is called the Milnor fibration of the polynomial function f
at p0.
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3 Stratifications

3.1 Algebraic partition

Let E be a complex algebraic subset of Cn+1. Let S1, . . . , Sk be a finite partition of E:

E = S1

∐
. . .

∐
Sk.

We say that it is a complex algebraic partition if the closures Si of Si in Cn+1 and differences Si \Si
are complex algebraic sets, for 1 ≤ i ≤ k.

Similarly let E be a real semi-algebraic subset of RN . Let S1, . . . , Sk a finite partition of E:

E = S1

∐
. . .

∐
Sk.

We say that this partition is a real algebraic partition of E if the closures Si of Si in RN and the
differences Si \ Si are semi-algebraic sets, for all i, 1 ≤ i ≤ k.

Any set Si in a partition S of E, 1 ≤ i ≤ k, is called a stratum of the partition.

3.2 Algebraic stratification

Let E be a complex algebraic subset of Cn+1. Let S1, . . . , Sk be an algebraic partition of E.

We say that (Si)1≤i≤k is a complex stratification, if it is a complex algebraic partition and each Si
is a connected complex manifold and the partition satisfies the frontier condition, i.e. Si ∩ Sj 6= ∅
implies Si ⊂ Sj .

Analogously let E be a real semi-algebraic subset of RN and let S1, . . . , Sk be an algebraic partition
of E.

We say that the partition (Si)1≤i≤k is a real stratification of E, if it is a real algebraic partition
and each Si is a connected smooth manifold and the partition satisfies the frontier condition, i.e.
Si ∩ Sj 6= ∅ implies Si ⊂ Sj .

Whenever we shall consider the stratification of a real algebraic set, we shall consider a stratification
by semi-algebraic sets, considering a real algebraic set as a particular semi-algebraic set.

We say that a map:
ϕ : E → F

of a stratified set (E,S) into a stratified set (F, T ) is a stratified map if for any stratum Si ∈ S,
there is a stratum Tj ∈ T such that ϕ induces a submersive and surjective map of Si onto Tj .

3.3 An example

Let E be a K-algebraic set. Let Σ(E) be the subset of singular points of E. We can define a
decreasing sequence of algebraic sets defined by induction:

1. Σ0 := E
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2. Let i ≥ 0, Σi+1 = Σ(Σi)

By Hilbert finiteness Theorem this sequence is stationary, so there is ` such that Σ` 6= ∅ and
Σ`+1 = Σ(Σ`) = ∅. Therefore, we have:

E = (Σ0 \ Σ1)
∐

. . .
∐

(Σi \ Σi+1)
∐

. . .
∐

Σ`.

In this way, we have defined a partition of E defined by the strata Σi \ Σi+1, for 1 ≤ i ≤ `+ 1.

The strata are smooth manifolds. However, the partition might not satisfy the frontier condition.

An algebraic partition T of a K-algebraic set is said to be finer than the algebraic partition S if the
closures of the strata of S are union of strata of T . We also say that the partition T is a refinement
of S.

In [22] (Theorem 18.11) H. Whitney proves that:

Proposition 3.1 Any stratification of a K-algebraic set has a refinement which is a stratification
with connected strata.

With these definitions we can define regular stratifications (see [22]), i.e. Whitney stratifications.

4 Whitney stratifications

4.1 The condition (a) of Whitney

Let S = (Si)1≤i≤k be a stratification of a K-algebraic subset E of KN . Let (Si, Sj) be a pair of
strata such that Si ⊂ Sj . Let p ∈ Si. We say that the pair (Si, Sj) satisfies the condition (a) of
Whitney along Si at the point p, if, for any sequence (pn) of points of Sj which converges to p such
the sequence of tangent spaces (TpnSj) has a limit T , then the tangent space TpSi is contained in
T .

We say that, the pair (Si, Sj) satisfies the condition (a) of Whitney along Si, if it satisfies the
condition (a) of Whitney along Si at any point p of Si.

Example: Consider the complex algebraic set E defined by X2 − Y 2Z = 0, which is known as
“Whitney umbrella”.

The singular set of E is given by X = Y = 0. This is a line Σ contained in E. A stratification of E
is given by E \ Σ and Σ. The pair (Σ, E \ Σ) does not satisfy the condition (a) of Whitney along
Σ at the origin 0 of C3.

One may consider a sequence (pn) of points of E \Σ given by pn = (0, yn, 0), where limn→∞ yn = 0.
Then, p = (0, 0, 0). We have Tpn(E \ Σ) = (X,Y )− plane and Tp(Σ) = Z − axis. The limit at the
point (0, 0, 0) of the sequence (Tpn(E \ Σ))n∈N of tangent spaces is the (X,Y )− plane and it does
not contain the Z − axis.
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4.2 The condition (b) of Whitney

Let (Si, Sj) be a pair of strata such that Si ⊂ Sj . Let p ∈ Si. We say that the pair (Si, Sj) satisfies
the condition (b) of Whitney along Si at the point p, if for any sequence pn of points of Sj and any
sequence (qn) of points of Si, which converges to p, such that the sequence of tangent spaces TpnSj
has a limit T and the sequence of lines qnpn has a limit `, we have ` ⊂ T .

We say that the pair (Si, Sj) satisfies the condition (b) of Whitney along Si if it satisfies the condition
(b) of Whitney along Si at any point p of Si.

Examples: In the example given above the pair (Σ, E \ Σ) does not satisfy the condition (b) of
Whitney along Σ at the origin 0 of C3.

Consider the complex algebraic set F given by X2− Y 2Z2−Z3 = 0 in C3. The singular locus Σ is
the line X = Z = 0. One can prove that this stratification satisfies the condition (a) of Whitney,
but it does not satisfies the condition (b) at the origin 0.

The sequences pn = (0, 1/n,−1/n2) and qn = (0, 1/n, 0) give sequences of tangent planes (Tpn(F \
Σ)) and of lines (qnpn) whose limits T and ` are such that: ` 6⊂ T .

In fact, the condition (b) of Whitney implies the condition (a) of Whitney (see [14] Proposition
2.4):

Lemma 4.1 Let E be a complex analytic subset of CN (resp. a real semi-algebraic subset of RN ).
Let S = (S1, . . . , Sk) be a stratification of E. Suppose that Si ⊂ Sj. Let p ∈ Si. Suppose that
the pair (Si, Sj) satisfies the (b)-condition of Whitney at p, then it satisfies the (a)-condition of
Whitney at p.

Proof. The following proof was given to me orally by D. Cheniot.

Assume that the pair (Si, Sj) satisfies the condition (b) of Whitney at p ∈ Si. Consider a sequence
(pn)n∈N a sequence of point of Sj which converges to p and such that the sequence of tangent spaces
Tpn(Sj) converge to T . We have to show that: Tp(Si) ⊂ T . Suppose otherwise. Then, there is a
line D in KN through the origin, such that D ⊂ Tp(Si), but D 6⊂ T .

By definition of the tangent space Tp(Si), there is a sequence of points (qn)n∈N of points of Si which
converges to p and such that the lines pqn converge to D. Since the sequence (pn) converges to p,
endowing the projective space of line directions with a metric, for any k ∈ N, we can find nk such
that the distance between the line directions pqk and qkpnk

is bounded by 1/k. Therefore, qkpnk

converges to D, and this would contradict that (Si, Sj) satisfies the condition (b) of Whitney at
p ∈ Si.

4.3 Whitney condition

Definition 4.2 We say that a stratification S of a K-algebraic set satisfies the Whitney condition
(resp. the Whitney condition (a)) if, for any pair (Si, Sj) of strata of S such that Si ⊂ Sj, the pair
satisfies the Whitney condition (b) (resp. the Whitney condition (a)).

In [22] (Theorem 19.2) H. Whitney proves:
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Theorem 4.3 Any K-algebraic set has a Whitney stratification. Any stratification has a refinement
which is a Whitney stratification.

Note: One can define partitions and stratifications of K-analytic subsets of open subsets of KN .
Also one can define the Whitney conditions in this context. See the original paper of H. Whitney
[22].

We can also extend the notion of stratification to any complex algebraic variety V in the following
way. An algebraic partition of V is a finite partition S1, . . . , , Sk such that the closures Si of Si in
V and the differences Si \ Si are subvarieties of V , for 1 ≤ i ≤ k.

An algebraic partition of complex algebraic variety is a stratification if each Si is a manifold and
the partition satisfies the frontier condition, i.e. Si ∩ Sj 6= ∅ implies Si ⊂ Sj .

4.4 Characterization of Whitney stratifications by Polar varieties

In the case the base field is the field of complex numbers C, there are many ways to characterize
Whitney stratifications. To my knowledge there are no such characterization over the real numbers.

One way is to consider polar varieties (see [19]).

Let E be an equidimensional complex algebraic subset of CN . Let p0 be a point of E. Consider
the restriction of a linear projection to E:

πk : E → Ck+1.

The restriction of πk to the non-singular part E \ Σ(E) of E has a critical set Γk. We have (see
[12] (2.2.2)):

Proposition 4.4 For all projections of a Zariski dense open set Ωk in the space of linear projections
of CN onto Ck+1, the closure Pk = Γk of Γk is either empty or a complex algebraic set of dimension
k and the multiplicity of Pk is the same for any πk ∈ Ωk.

Definition 4.5 For 1 ≤ k ≤ dimE, the algebraic sets defined by the projections πk ∈ Ωk are called
the polar varieties of E at the point p0 and the multiplicity of Pk at p0 is called the k-th polar
multiplicity of E at p0.

In [19] B. Teissier proved the following:

Theorem 4.6 Let E be an equisingular complex algebraic set. Let S = (S1, . . . , Sk) be a stratifica-
tion of E. Assume that for any pair of strata (Si, Sj) such that Si ⊂ Sj the k-th polar multiplicity
of the closure Sj is the same at all the points of Si, when 1 ≤ k ≤ dimSj, then S is a Whitney
stratification of E.

There is also a combinatorial way to state if a stratification is a Whitney stratification. We shall
introduce this way later because we need to understand first how much Milnor fibration Theorem
can be extended.
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4.5 First isotopy theorem of Thom-Mather

The main properties of Whitney stratifications are Thom-Mather isotopy Theorems ([20] and [14]
Porposition 11.1).

The first isotopy theorem can be understood as an extension of Ehresmann Lemma that we have
used to show Milnor fibration Theorem for hypersurfaces with an isolated singular point.

In many cases we shall consider real algebraic sets and more generally semi-algebraic sets. In the
theorem below V might be a semi-algebraic set or a complex algebraic set.

Theorem 4.7 (First isotopy theorem of Thom-Mather) Let ϕ : V → T be a proper algebraic map.
Assume that V is stratified by S = (S1, . . . , Sk) and that T is connected and non-singular. If the
restrictions of ϕ to each strata Si (1 ≤ i ≤ k) is a smooth map which are submersive and surjective
onto T , then the map ϕ is a locally trivial topological fibration.

Example. Let E be the real algebraic subset of R3 defined by:

XY (X − Y )(X − TY ) = 0.

Consider the projection onto the T -axis. Consider the “tube” given by X2 + Y 2 ≤ 1. The inter-
section:

V = E ∩ {X2 + Y 2 ≤ 1} ∩ {0 < T < 1}

is semi-algebraic. The projection ϕ onto the T -axis induces a proper map of V onto the open
interval 0 < T < 1. Let us stratify V with S1 = {(0, 0)} × {0 < T < 1}, S2 = V ∩ {X2 + Y 2 = 1}
and S3 = V \ (S1∪S2). The restrictions of ϕ to the connected components of each of Si, i = 1, 2, 3,
induce submersive and surjective maps onto the open interval {0 < T < 1}.

The first isotopy theorem of Thom-Mather tells us that ϕ is a locally trivial continuous fibration,
but it cannot be a smooth fibration otherwise the cross ratio of the lines:

XY (X − Y )(X − tY ) = 0

which varies continuously with t would be constant.

5 Thom Condition

5.1 Definition

When one considers a map f between stratified sets, there is an important condition on the strat-
ification of the source called Thom condition or af condition (see [20] or [14] p. 65).

Let ϕ : V →W be an algebraic map. Let S = (S1, . . . , Sk) be a stratification of V .

We say that the stratification S of V satisfies the Thom condition or the aϕ condition if, for any
pair (Si, Sj) of strata, such that Si ⊂ Sj , for any point p ∈ Si and any sequence qn of points of Sj
converging to p for which the limit of the tangent spaces at qn to the fibers ϕ−1(ϕ(qn)) ∩ Sj exists
and is equal to T , we have T ⊃ Tp(ϕ−1(ϕ(p)) ∩ Si).
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Example. Let e : E → C2 be the blowing-up of the point 0 in the complex plane C2. Let stratify
the map e by E \ D and D, where D is the exceptional divisor of e and {0} and C2 \ {0}. This
stratified map does not satisfy the Thom condition, since the fibers of e outside 0 are points.

Note that, pulling back the map e by e itself, the new map that we obtain can be stratified to
satisfy the Thom condition (see [18]).

5.2 Hironaka Theorem

A theorem of H. Hironaka will allow us to generalize Milnor fibration Theorem (see [6] Corollary 1
§5 p. 248):

Theorem 5.1 Let f : E → C be an algebraic map from a complex algebraic set E into a non-
singular complex curve. One can stratify the map f by Whitney stratifications such that the strati-
fication of E satisfies Thom condition for f .

In the case of hypersurfaces in Cn+1, in [5] (Theorem 1.2.1 p. 322 - 324) we prove this theorem
using  Lojasiewicz inequality.

5.3 An example

In general when the target of the map has not complex dimension one, there are no reason to obtain
stratifications with Thom conditions.

For instance, consider the polynomial map F : C3 → C2 given by:

F (X,Y, Z) = (Y 2 −X2Z,X).

The critical locus is Y = X2 = 0. Its image by F is (0, 0).

One can check that at the origin one cannot find a Whitney stratification which satisfies Thom
condition.

In fact, in [18] it is proved that after a base change the original map gives a new map which can
be stratified with Thom condition. This result has been little used in the litterature.

5.4 Second isotopy theorem of Thom-Mather

Now we can formulate the second isotopy Theorem of Thom-Mather (see [14] Proposition 11,2).

Consider the following diagram:

E
f◦g

��@
@@

@@
@@

g // F

f��~~
~~

~~
~

T

where g is a stratified map, where E is stratified by S = (S1, . . . , Sk) and F is stratified by
S ′ = (S′1, . . . , S

′
`), and T is non-singular. We say that g is a Thom map over T if:
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1. The maps g and f are proper;

2. For each stratum S′i of S ′ the restriction f |S′i is submersive;

3. For any stratum Sj of S there is a stratum S′i of S ′ such that g(Sj) ⊂ S′i and the map induced
by g from Sj into S′i is submersive;

4. The stratification S satisfies the Thom condition relatively to g.

Then:

Theorem 5.2 (Second isotopy theorem of Thom-Mather) If g is a Thom map over T , the map g
is topologically locally trivial over T .

6 The fibration theorem

6.1 Case of functions in Cn+1

In §2 we have proved a fibration theorem when the point p0 is an isolated critical point of the
polynomial function f : Cn+1 → C.

In this section we shall drop the hypothesis that the point p0 is an isolated critical point.

Since the critical point is no more isolated, the critical point locus of f intersects any sphere
centered at the point po. Therefore, the hypersurface f−1(f(p0)) does no intersect transversally in
Cn+1 small spheres Sε(p0). However, by Proposition 1.1, the fibers f−1(p0 + t) for t small enough
and 6= 0 are non-singular hypersurfaces. Hironaka Theorem (see 5.1 above) tells us that we can
stratify the polynomial f by Whitney stratifications with Thom condition.

Let us fix a Whitney stratification S = (S1, . . . , Sk) of Cn+1 adapted to f−1(f(p0)) and which
satisfies Thom condition relatively to the polynomial function f .

We have seen that there is εi > 0 such that the restriction to a stratum Si, which is the difference
of complex algebraic set, of the square of the distance function to the point p0 has no critical point
in an open interval (0, εi) (see Proposition 1.3 above). Therefore, there is ε0 = inf1≤i≤k(εi) > 0,
such that for ε, ε0 > ε > 0, the sphere Sε(p0) intersects all the strata of S transversally in Cn+1.
Since the stratification S satisfies Thom condition relatively to f , there is η > 0 small enough,
such that the non-singular hypersurfaces f−1(f(p0 + t)) intersect the sphere Sε(p0) transversally in
Cn+1, when η > |t| > 0.

We can apply Ehresmann Lemma as in §2 to claim that:

Theorem 6.1 Let f : Cn+1 → C be a complex polynomial function. Let p0 be point of Cn+1. There
is ε0 > 0, such that for any ε, ε0 > ε > 0, there is η0, such that, for any η > 0, η0 > η > 0, the
map:

ϕε,η : Bε(p0) ∩ f−1(S1
η(f(p0)))→ S1

η(f(p0))

induced by the polynomial function f is a locally trivial differentiable fibration.

13



6.2 Functions on an algebraic set

In fact, if we use the Theorem 5.1 we can obtain a more general statement, but we have only to
consider topological fibrations instead of differentiable fibrations (see [9] Theorem 1.1):

Theorem 6.2 Let E be a complex algebraic subset of CN and p0 be a point of E. Let f : CN → C
be a complex polynomial. There is ε0 > 0, such that, for any ε, ε0 > ε > 0, there is η0, such that,
for any η > 0, η0 > η > 0, the map:

ϕε,η : Bε(p0) ∩ E ∩ f−1(S1
η(f(p0)))→ S1

η(f(p0))

induced by the polynomial function f is a locally trivial continuous fibration.

Since we can stratify the restriction fE : E → C of f to E to have Whitney and Thom conditions,
for every strata Si which has p0 in its closure, we can find ε0 > 0, such that, for any ε, ε0 > ε > 0,
the sphere Sε(p0) intersect the stratum Si (i=1,. . . , k) transversally in CN , because each Si is a
difference of complex algebraic sets (see Proposition 1.3 of §1 above).

Let us fix such a ε > 0. Because of Thom condition there is η0 > 0 such that the fiber:

f−1(f(p0 + t)) ∩ Si

intersects transversally the sphere Sε(p0) in CN . We can stratify the semi-algebraic set:

Bε(p0) ∩ E ∩ f−1(S1
η(f(p0)))

with the strata:
Si ∩

◦
Bε(p0) ∩ E ∩ f−1(S1

η(f(p0)))

and Si ∩ Sε(p0) ∩ E ∩ f−1(S1
η(f(p0))), for i = 1, . . . , k. By using the result of [2], we can prove

that this stratification satisfies the frontier condition, then, it is easy to prove that it is a Whitney
stratification.

The first isotopy Theorem of Thom-Mather 4.7 (instead of Ehresmann Lemma) implies our Theo-
rem.

Note and Exercise: The Theorem 6.2 is true when one considers a complex analytic function
on a complex analytic set. To prove it, one needs stratifications of complex analytic sets. In this
case the number of strata might not be finite, but the partition is required to be locally finite. We
leave the reader to develop by himself the correct theory of stratifications. The isotopy theorems
are true for a general theory of stratified sets.

7 Relative Polar curve and general projections

7.1 Isolated singularity relatively to a stratification

Let E be a complex algebraic subset of CN and p0 be a point of E.

Let S = (S1, . . . , Sk) be a Whitney stratification. The restriction F = f |E of a complex poly-
nomial f to the complex algebraic set E has an isolated singularity at the point p0 relatively to
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the stratification S if the fiber f−1(f(p0)) intersects the strata Si transversally in CN at any point
outside p0 (see [10]).

One can observe that if the restriction F of a complex polynomial function f to E has an isolated
singular point relatively to the Whitney stratification S, the stratification automatically satisfies
Thom condition relatively to F .

7.2 Relative polar curve

Now, let l : CN → C be a linear form. Consider the restriction ` of l to E. The functions F and `
define a map:

Φ = (`, F ) : E → C2.

Observe that, if the linear form l is sufficiently general, the map Φ satisfies Thom condition relatively
to the Whitney stratification of E.

In fact, if the linear form l is sufficiently general, the fibers of Φ have isolated singularities relatively
to the stratification S in the sense that, for any point x ∈ E, the fiber Φ̃−1(Φ(x)) intersects the
strata Si transversally in CN except at a finite number of points, where Φ̃ is the polynomial map:

(l, f) : CN → C2.

Precisely, consider the restriction of Φ to each of the strata Si, 1 ≤ i ≤ k. If the linear form l is
sufficiently general, the critical locus Γi is either the empty set ∅ or a curve. The set:

Γ(l) = ∪k1Γi,

which is either empty or an algebraic curve, is called the relative polar curve of the linear form l
relatively to the stratification S. We have:.

Lemma 7.1 The restriction of Φ to the germ at a point p ∈ E of the relative polar curve Γ(l) is
quasi-finite.

This lemma is an immediate consequence of the fact that the fiber Φ−1(Φ(p)) has an isolated
singularity relatively to the stratification S. Then, the fiber of the germ of Φ restricted to Γ(l) is
either empty or equal to {p}.

This observation implies:

Corollary 7.2 The germ of Φ at ay point p ∈ E restricted to the germ Γ(l) at p is a germ of finite
complex analytic map.

This corollary is an immediate consequence of the lemma by using the geometric version of Weier-
strass Preparation theorem given by C. Houzel in [7] which tells that a complex analytic map germ
with finite fibers is finite.

This means that there are neighborhoods U and V of p and Φ(p) such that Φ induces a finite
analytic map, i.e. a proper complex analytic map with finite fibers, of U ∩ Γ(l) into V .
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7.3 Generalized discriminant

We keep the notations of the preceding section. Then, we have:

Proposition 7.3 There are open neighborhoods U(p) and V (p) of p and Φ(p) such that the map Φ
induces a map Φp : U(p)→ V (p) such that the restriction of Φp to Γ(l)∩U(p) is a complex analytic
finite map, and Φp induces a locally trivial topological fibration of U(p)\Φ−1

p (Φp(Γ(l)∩U(p))) onto
V (p) \ Φp(Γ(l) ∩ U(p)).

As we have seen before, Corollary 7.2 implies that there are neighborhoods U and V of p and Φ(p)
such that Φ induces a finite map Φp : U → V , therefore, the image ∆(l) = Φp(Γ(l)∩U) is a complex
analytic curve of V .

By definition inside U the restriction of Φ to any strata Si has no critical point at any point of
Φ−1(y) with y ∈ V \∆(l). Let Sε(p) be the sphere of CN centered at the point p with radius ε such
that the ball Bε(p) that it bounds is contained in U and any sphere Sε′(p) of radius ε ≥ ε′ > 0 is
transverse in CN to Φ−1(Φ(p)) ∩ (Si ∩ U), for 1 ≤ i ≤ k.

Since the fiber Φ−1(Φ(p)) has an isolated singularity at p relatively to the stratification S, there is

η > 0 such that, for all y ∈
◦
Bη(Φ(p)), the fiber Φ−1(y) is transverse in CN to Sε(p).

Define U(p) =
◦
Bε(p) ∩ E ∩ Φ−1(

◦
Bη(Φ(p))) and V (p) =

◦
Bη(Φ(p)) and the map Φ induces a map:

Φp : U(p)→ V (p).

The sets Si ∩
◦
Bε(p)∩Φ−1(

◦
Bη(Φ(p)) \∆(l)) and Si ∩ Sε(p)∩Φ−1(

◦
Bη(Φ(p)) \∆(l)) define a Whitney

stratification of Bε(p) ∩ E ∩ Φ−1(
◦
Bη(Φ(p))) (use [2] to prove the frontier property, then it is easy

to prove that one has Whitney condition) and Φ induces a map:

ϕ : Bε(p) ∩ E ∩ Φ−1(V (p) \∆(l))→ V (p) \∆(l).

Since Bε(p) is compact, the map ϕ is proper and we have defined Γ(l) and ∆(l) such that it has
maximal rank on the Whitney strata of:

Bε(p) ∩ E ∩ Φ−1(
◦
Bη(Φ(p)) \∆(l)).

Thom-Mather first isotopy Theorem implies that ϕ is a locally trivial topological fibration. There-
fore, this fibration induces a locally trivial topological fibration of U(p) ∩ Φ−1(V (p) \ ∆(l)) over
V (p) \∆(l).

Then, one may stratify the map Φp : U(p)→ V (p) by considering on U(p) the strata Si∩U(p)\Γi,
(Γi \ {p}) ∩ U(p) and {p} and on V (p) the strata V (p) \ ∆(l), Φ((Γi \ {p}) ∩ U(p)) and {Φ(p)}.
These stratifications are Whitney stratifications since S is a Whitney stratification and V (p) is
non-singular.

Locally, the set ∆(l) ∩ V (p) plays the role of a discriminant of the complex analytic map Φp. We
shall call it the topological discriminant of Φ.

Note: One can define by induction a map Φr+1 = (`1, . . . , `r, F ) : E → Cr+1 for r ≤ dimE where
`1, . . . , `r are restrictions to E of general linear forms of CN . For any point p of E, the map Φr+1
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induces a map of an open neighborhood U(p) of p in E into an open neighborhood V (p) of Φ(p) in
Cr+1.

The union of the images by Φr+1 of the closures in E critical loci of Φr+1 restricted to the strata
Si would locally define a topological discriminant ∆ ∩ V (p) of Φr+1.

Let us suppose that the function F is itself induced by a general linear for l0. In this way we can
define a general projection of E into Cr+1.

8 Vanishing Euler characteristics

8.1 Local Vanishing fibers

Let E be a complex algebraic subset of CN and p0 be a point of E.

We have defined a general projection πr : E → Cr for any r, 1 ≤ r ≤ dimE. At the point p0 we
have defined a map germ:

πr : (E, p0)→ (Cr, πr(p0))

and a germ of topological discriminant (∆(πr), πr(p0)). The map germ πr induces a map:

pr : U(p0)→ V (p0)

and a topological discriminant ∆r which is a closed subset of V (p0). The map pr induces a locally
trivial topological fibration of U(p0) \ p−1

r (V (p0) ∩∆r) onto V (p0) \∆r. The fiber of this locally
trivial fibration is called a vanishing fiber of dimension dimE − r of E at p0.

The Euler characteristic χdimE−r(p0) of a vanishing fiber of dimension dimE− r at the point p0 is
called the vanishing Euler characteristic of E at p0 of dimension dimE − r.

At any point p of a complex algebraic set E we define a (dimE)-uple:

χ∗(E, p) = (χ0(p), . . . , χdimE−1(p)).

We may call χ∗(E, p) the vanishing characteristics of E at p.

8.2 Combinatorial characterization of Whitney conditions

We can formulate the following characterization of Whitney conditions (see [13] Théorème (5.3.1)):

Theorem 8.1 Let E be a complex algebraic subset of CN . Let S = (S1, . . . , Sk) be a stratification
of E. Suppose that, for any pair (Si, Sj) such that Si ⊂ Sj, the vanishing characteristics χ∗(Sj , p)
is constant for p ∈ Si, then the stratification S is a Whitney stratification.

This theorem suggests that there is a relation between Vanishing characteristics and Polar varieties.

This relation exists when one considers a Whitney stratification S = (S1, . . . , Sk) of E. It is
convenient to write χ(E,Si) (or χ(Sj , Si), whenever Si ⊂ Sj) for χ(E, p) (or for χ(Sj , p)) with
p ∈ Si, since one can prove that, using Thom-Mather first isotopy theorem, the topology of the
vanishing fibers of E (or Sj) along Si does not vary.
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In particular we have (see [13] Théorème (4.1.1)):

Theorem 8.2 Let E be an equidimensional complex algebraic subset of CN . Let S = (S1, . . . , Sk)
be a Whitney stratification of E. Let us denote di = dimSi. Let x ∈ Si. We have:

χdimE−di−1(E,Si)− χdimE−di−2(E,Si)
=

∑
6=i(−1)dj−di−1m(PdimE−dj+di+1(Sj), x))(1− χdimE−dj−1(X,Xj))

where m(P, x) is the multiplicity of P at x.

The study of Whitney stratification leads, on the algebraic geometry side, to the study of Polar
Varieties and, on the topological side, to Vanishing Fibers or Vanishing Euler characteristics.

9 Bouquet of spheres

9.1 Statement of the theorem

In some situations, results can be formulated concerning the Vanishing Fibers associated to germs
of complex algebraic sets.

The most surprising result is (see [11]):

Theorem 9.1 The vanishing Fibers of a germ of complex complete intersection have the homotopy
type of a bouquet of real spheres of dimension equal to the complex dimension of each Vanishing
Fiber.

Just notice that this is a theorem similar to the result of J. Milnor in [16] (Theorem 6.5) or to the
one of H. Hamm for the case of complete intersections ([4]).

9.2 Hypersurfaces

In this section we shall first assume that E is a complex hypersurface define by the polynomial
function f : Cn+1 → C. In this section f might have non-isolated singularities.

We have seen that we can stratify the map f with Whitney stratifications satisfying Thom condition
(see above Theorem 5.1 by Hironaka).

Let l be a general linear form of Cn+1. It defines a map:

Φ = (l, f) : Cn+1 → C.

Let p be a point of E. Consider the germ of Φ at p. The critical locus of the germ of Φ at p depends
linearly on l. A classical theorem of Bertini says that the singular points of this linear system lie
in the fixed points of the linear system which are precisely the critical space of f at p.

Therefore in a sufficiently small neighborhood U of p in Cn+1 the critical space of Φ is non singular
outside the hypersurface E. The closure in U of this critical space is empty or a curve Γ that we
have called the relative polar curve of f relatively to the linear form l in the case f has an isolated
singularity at p..
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As we have done in §7, we can prove that there are 1� ε� η > 0 such that Φ induces:

Φε,η(p) : Bε(p) ∩ Φ−1(
◦
Bη(Φ(p)))→

◦
Bη(Φ(p))

which is a stratified map with Thom condition. Let ∆ be the union of the image of the complex

curve Γ ∩ Bε(p) ∩ Φ−1(
◦
Bη(Φ(p))) by Φε,η(p) and the trace in

◦
Bη(Φ(p)) of the line C× {f(p)}:

∆ := Φε,η(p)(Γ ∩ Bε(p) ∩ Φ−1(
◦
Bη(Φ(p)))) ∪ (

◦
Bη(Φ(p)) ∩ C× {f(p)}).

As we have done in §7, we can prove that the map Φε,η(p) induces a locally trivial smooth fibration

on
◦
Bη(Φ(p)) \∆.

Notice that the germ of the critical locus of f at p which might be of dimension ≥ 1 has its image
by the germ of Φ at p contained in C× {f(p)}.

Since the linear form l is general, if it is not empty, the space Γ \ {p} is non-singular, which means
that the fiber Φε,η(p)−1(Φ(p′)) has an ordinary quadratic point at p′ ∈ Γ \ {p}. This shows that

the fibers of Φε,η(p) over
◦
Bη(Φ(p))\C×{0} are transverse to Sε(p) in Cn+1, because the fibers over

∆ \ (C× {f(p)}) have an isolated singularity at the points of Γ \ {p}.

For t sufficiently small, the fiber of Φε,η(p) above (l(p) + t, f(p)), is a vanishing fiber of dimension
dimE − 1 of E at p. Let us call (u, v) the coordinates of C2 such that;

u = l and v = f.

Consider the line u = l(p) + t. One can prove that the space of complex dimension n:

Φε,η(p)−1({u = l(p) + t})

is contractible and the space:
Φε,η(p)−1(D)

where D is a small disc of radius r of the line {u = l(p) + t} centered at (l(p) + t, f(p)) retracts by
deformation on the vanishing fiber Φε,η(p)−1((l(p) + t, f(p))).

The restriction of |f | to the space Φε,η(p)−1({u = l(p)+t}) defines a real function, Let us start with
the value r. As the values of |f | meet the values of the intersection points of the line ({u = l(p)+t})
with ∆, the restriction of |f | to Φε,η(p)−1({u = l(p) + t}) acquires Morse points with index equal
to n (see [8] p. 30).

We have the lemma:

Lemma 9.2 A topological space which becomes a space homotopically equivalent to a bouquet of
real spheres of dimension n after attaching cells of dimension n is homotopically equivalent to a
bouquet of real spheres of dimension n− 1.

Therefore, the space Φε,η(p)−1(D) is homotopically equivalent to a bouquet of real spheres of
dimension n− 1. Since this space retracts by deformation to the vanishing fiber

Φε,η(p)−1((l(p) + t, f(p))),

this vanishing fiber is also homotopically equivalent to a bouquet of real spheres of dimension n−1.
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Thus, we have proved that the Milnor fiber at p of the restriction of linear form to E has the
homotopy type of a bouquet of real spheres of dimension n− 1. This Milnor fiber is also one of the
vanishing fibers at the point p. Since we can consider the other vanishing fibers to be Milnor fibers
of the restriction of a general linear form to a lower dimensional hypersurface, we have proved the
Theorem 9.1 for hypersurfaces.

9.3 Complete intersections

In the case of complete intersections, suppose that E is defined by f1 = . . . = fs = 0. We may
replace the equations f1, . . . , fs by general linear combinations of f1, . . . , fs. Then, E is defined
by fs on the complete intersection E1 = {f1 = . . . = fs−1 = 0}. By replacing the original
equations by general linear combinations, the singular points of E1 lie in the fixed points, i.e. in
E = {f1 = . . . = fs = 0}.

Therefore E1\E is non-singular and we can repeat a similar argument as the one we have developed
above for hypersurfaces. The Lemma 9.2 will show that by attaching cells of dimension dimE1− 1
the Milnor fiber of a general linear form restricted to E at p gives the Milnor fiber of a general
linear form restricted to E1 at p.

Since, by induction on the number of equations, we can suppose that the Milnor fiber of a general
linear form restricted to E1 at p has the homotopy type of a bouquet of real spheres of dimension
dimE1− 1, the Milnor fiber of a general linear form restricted to E at p has the homotopy type of
a bouquet of spheres of dimension dimE − 1 = dimE1 − 2.

We leave details to the reader.
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[13] Lê Dũng Tráng and B. Teissier, Cycles évanescents, sections planes et conditions de Whitney
II, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., 40 (1983), Amer.
Math. Soc., Providence, RI, pp. 65103.

[14] J. Mather, Notes on topological stability, Harvard Univ. Preprint (1970).

[15] J. Milnor, Topology from the differentiable viewpoint, Based on notes by David W. Weaver
The University Press of Virginia, Charlottesville, Va. (1965) pp. 64.

[16] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Prince-
ton University Press, Princeton, N.J. (1968) 122 pp.

[17] J. Milnor, Morse theory (Based on lecture notes by M. Spivak and R. Wells), Annals of
Mathematics Studies 51, Princeton University Press, Princeton, N.J. (1963) 153 pp.

[18] C. Sabbah, Morphismes analytiques stratifiés sans éclatement et cycles évanescents, Analysis
and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101-102, Soc. Math.
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